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Diffusion of Si impurities in Ni under stress: A first-principles study
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We perform a first-principles study of the effect of strain on the migration of Si atoms in Ni. For that
purpose, migration barriers are computed using the nudged elastic band method and attempt frequencies are
computed using the direct force method. Good agreement is found with tracer diffusion experiments. We used the
elastic dipole model to calculate effects of strain on migration barriers by performing calculations on unstrained
cells, therefore reducing significantly the computing time. We validate this approach by comparing results with
migration barriers calculated on strained cells and obtain an excellent agreement up to a strain of 1%. Computing
all the jump frequencies in the neighborhood of Si solutes, the effect of strain is found to be nearly independent
of the relative position of the solute atom. A simple elastic analysis models the changes in the vacancy jump with
strain; this correlates with the changes in geometry for the “cage” of atoms surrounding the hopping atom at the
saddle point.
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I. INTRODUCTION

Irradiation of alloys produces vacancies and interstitial
atoms in the bulk of the material [1]. These point defects are
mobile at finite temperature, and their elimination at sinks such
as dislocations, grain boundaries, or free surfaces induces a
flux of point defects within the material [2]. These point defects
also activate the diffusion of solute atoms. Furthermore, atomic
fluxes are coupled to the point defect fluxes [3–5]. These
flux couplings can induce a depletion or a segregation of
solute atoms in the neighborhood of the defect sinks [6,6–8].
Radiation-induced segregation can lead to the precipitation of
solute-rich phases near these sinks [9,10], as is the case for
solid solution of Si in Ni [7,8,11]. In a substitutional alloy, the
description of flux coupling requires an accurate knowledge
of the jumps of the vacancy around the solute [3,4]. The jump
frequencies can be computed using density functional theory
(DFT) calculations [12–16] and their results incorporated into
atomic kinetic Monte Carlo (AKMC) simulations [12,13,16]
or into a mean-field model [14,15] to provide the Onsager
matrix.

Stress and atomic diffusion closely affect each other. Sinks
such as dislocations and grain boundaries generate a stress field
that modifies diffusion properties in their neighborhood. Stress
affects diffusion both from a thermodynamic and a kinetic
point of view, through the driving force and the Onsager
matrix. Earlier work addressed the thermodynamic aspect
of the problem [17–20]. Regarding the kinetic aspects, the
symmetry of the saddle point configuration is the key element
of the stress-induced symmetry breaking [21–23]. Recent
simulations show that both aspects need to be considered to
achieve accurate simulations of microstructure evolution [24]
or to model diffusion around a dislocation [25,26].

In a previous publication [27], we investigated the effect
of the strain field induced by an edge dislocation on the Si
flow in Ni. Here, we detail how DFT calculations can be used
to obtain the effect of strain on the atomic-scale diffusion
properties in the case of Si-vacancy-mediated diffusion in Ni.
By performing DFT calculations on strained and unstrained
cells, we show that in the case of the Si impurities in Ni,

the effect of strain on the jump frequencies can be obtained
without requiring systematic calculations on the strained cell
by using the elastic dipole description [20,28,29]. Moreover,
in the case of the Ni(Si) system, the strain effect appears to be
mostly independent of the type of jump. The methods used to
compute the effect of strain on the jump frequencies and the
DFT calculations are presented in the first section. Next, the
results obtained in the case of the Ni(Si) alloy are presented
and discussed. Finally, the results are compared to a simple
elastic model proposed in Ref. [30].

II. METHODOLOGY

A. Atomic-scale diffusion

At the atomic scale, diffusion is a succession of thermally
activated events, each of them corresponding to an atomic
jump. The frequency of those events depends on the local
chemical environment, and the number of different events—
and thus the number of different frequencies—depends on
the crystal structure and the migration mechanism considered.
We consider the case of vacancy-mediated diffusion in the
dilute limit. The range of the vacancy-solute binding energy
determines the number of events to consider. Our preliminary
work showed that binding energies between Si atoms and
vacancies extend up to the third-nearest-neighbor sites and
these interactions are detailed in Sec. II B. In an unstressed
fcc structure where a vacancy can only move to the nearest-
neighbor (NN) sites and interacts with the solute atoms up
to the third-NN sites, there are 16 unique geometries of the
triplet-jumping atom-vacancy solute to be determined.

Following the notation introduced in Ref. [3], these 16
frequencies can be written under the form w

(ζ )
abc, where a

designates the vacancy-jumping atom vector symmetry class,
b the solute-jumping atom symmetry class, and c the vacancy-
solute symmetry class, while ζ = 0 for jumps in the bulk,
ζ = 1 for jumps from a site in interaction with a solute toward
another one, ζ = 2 for a vacancy-solute exchange, ζ = 3 for
a dissociation exchange, and ζ = 4 for an association jump.
Using the NN distances for a,b, and c the 16 frequencies are
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FIG. 1. Vacancy jump frequencies in a dilute fcc binary alloy with
third-nearest-neighbor interactions. Arrows indicate the direction of
the jumps. The solute atom is represented by a filled circle, and the
numbers on lattice sites indicate the distance from the solute atom
site while an ∞ indicates sites beyond the range of the interactions.
Names of the return jumps have been omitted for the sake of clarity.
In all cases, the reverse jump of w

(1)
abc is w

(1)
acb, and for w

(4)
ab∞ is w

(3)
a∞b.

written w
(0)
1 , w

(2)
1 , w

(1)
111, w

(1)
121, w

(1)
112, w

(1)
131, w

(1)
113, w

(1)
132, w

(1)
123,

w
(1)
133, w

(3)
1∞1, w

(3)
1∞2, w

(3)
1∞3, w

(4)
11∞, w

(4)
12∞, and w

(4)
13∞. They are

numbered from 0 to 15 in that order (see Table III) and are
illustrated in Fig. 1.

Using Vineyard’s harmonic transition state equation [31],
the frequency w

(ζ )
abc can be written as the product of an attempt

frequency ν
(ζ )
abc and the exponential of the product of a mi-

gration barrier energy E
mig,(ζ )
abc and the inverse thermodynamic

temperature β = (kBT )−1:

w
(ζ )
abc = ν

(ζ )
abce

−βE
mig,(ζ )
abc . (1)

In the following, the dependencies of ν and Emig on
ζ,a,b,and c will be omitted when no confusion is possible.
As detailed in Sec. II B, DFT calculations can provide ν and
Emig for each frequency.

The effect of strain on a given jump depends on the
symmetry of the configurations involved in this jump. In
the initial configuration of the atomic exchange in bulk Ni
(corresponding to w

(0)
1 ), a vacancy on a site of the fcc lattice

does not lower the cubic symmetry. However the saddle point
configuration breaks the cubic symmetry. This situation is
illustrated in Fig. 2, which shows an exchange along the
[110] direction, where the saddle point breaks the symmetry
between the 〈100〉 directions. The presence of a solute atom
in the neighborhood also breaks symmetries of the initial and
final configurations. Thus in the presence of a strain field, the
different variants of each of the 16 types of atomic jumps are
differentiated and the 16 frequencies are split into a number of
frequencies that depends on the symmetries respected by both
the initial configuration and the saddle point.

FIG. 2. Exchange of an atom (in black) with a neighboring
vacancy represented by a square along the (110) direction in a fcc
lattice. The atoms forming the cage around the saddle point are shown
in gray.

In the linear limit, the effect of strain is the superposition
of the effect of each of its components on the saddle point and
the initial configuration. Hence in that limit, the independent
knowledge of the effect of each component of the strain tensor
is sufficient to describe the effect of any strain tensor. Hence,
using cubic symmetry, we investigate the effect of elementary
uniaxial and shear strain on the different frequencies of the
original fcc structure.

B. DFT calculations

The migration barrier and the attempt frequency of each
jump are obtained from first-principles calculations. We used
the Vienna Ab initio Simulation Package (VASP), a plane
wave DFT code [32]. Non-spin-polarized calculations are
performed with Vanderbilt ultrasoft pseudopotentials using
respectively an Ar and Ne core for Ni and Si atoms, within the
local density approximation [33] using the parametrization
by Perdew and Zunger [34]. A plane wave cutoff energy of
420 eV converged to 1 meV/atom is used in all calculations.
Preliminary calculations were performed using a 32-atom 2 ×
2 × 2 supercell for the calculation and a �-centered k-point
mesh of 12 × 12 × 12 with a Methfessel-Paxton smearing
of 0.1 eV converged to 1 meV/atom. As the third-nearest-
neighbor solute-vacancy binding energy represents 40% of
the first-nearest-neighbor binding energy, its effect could not
be neglected beforehand. In order to consider these third-
nearest-neighbor interactions, a 108-atom 3 × 3 × 3 supercell
is used with a 8 × 8 × 8 k-point mesh to minimize interactions
between periodic images. The configurations are relaxed
until forces are below 5 meV/Å. Note that we have chosen
non-spin-polarized calculations for Ni in order to reproduce
the correct high-temperature nonmagnetic state. The vacancy
formation energy depends on the magnetic state; in the current
case Ef = 1.63eV was found. In comparison, a preliminary
calculation in the GGA approximation provided a vacancy
formation energy Ef = 1.381eV. As experiments provide
results ranging between 1.45eV and 1.80eV [35], the LDA
approximation was preferred to the GGA. The large disparity
between the GGA ab initio value and the experimental value is
well known and largely due to surface effects, an effect which
has been studied in detail in Refs. [36,37].
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The migration barriers are obtained from the climbing-
image nudged elastic band (NEB) method. The difference
between the energy of the transition state and the energy
of the original configuration at fixed volume and cell shape
provides the migration enthalpy. A single intermediate image
is computed [38] between the initial and the final configuration,
for which forces along the path are negated while components
perpendicular to the path are unchanged. Restoring forces are
checked to ensure that a first-order saddle point is found.

The attempt frequency can be written as a product of the
phonon frequencies [31]. Let xj and xk be two of the 3N

degrees of freedom of a system of N atoms, mj and mk

the mass of the related atoms. To each positive eigenvalue
Ei of the mass-weighted Hessian m

1/2
j Hjkm

1/2
j , a phonon

frequency νi is associated, with ν2
i = Ei . The stability of an

equilibrium position ensures that all eigenvalues of the Hessian
are positive. However, in the saddle point configuration, a
negative eigenvalue is associated with the unstable mode. The
attempt frequency is the product of all the real frequencies in
the initial configuration (ν0

p) divided by the product of all real

frequencies in the saddle point configuration (ν†
q):

ν =
∏3N−3

p ν0
p∏3N−4

q ν
†
q

. (2)

In this work, the phonon calculations are performed by
using the direct force constant method [39,40] as implemented
in the Alloy Theoretic Automated Toolkit (ATAT) [41,42]. A
previous study considered the convergence of the attempt fre-
quencies with the number of modes for the Ni(Si) system [27].
A 64-atom supercell with a k-point mesh of 2 × 2 × 2 was
used for these calculations. It showed that considering only
the modes associated with the displacements of the hopping
atom provides a reasonable approximation of the converged
value. As a consequence, the values provided here correspond
to calculation based on the modes of the hopping atom only,
computed in a 108 atom 3 × 3 × 3 cell.

Energy minimization of a pure nickel cubic cell with respect
to the volume leads to a lattice parameter a of 3.43 Å. One can
note that this value is 3% lower than the experimental value
3.524 Å [43]. The effect of strain on the migration barrier
is investigated by performing simulations using the relaxed
cubic cell with the lattice parameter a = 3.43 Å, as well as on
strained geometries described in the Appendix.

C. Description of point defects in elastic theory

Point defects and their migration can be considered within
the framework of elastic theory [20,29]. The energy variation
�Eel induced by a homogeneous strain tensor ε of a system
of volume V can be written

�Eel =
∑
i,j

V σij εij , (3)

where σ is the stress tensor of the system. In elasticity theory,
a point defect is described by a second-rank tensor Pij usually
called “dipole tensor” and a fourth rank tensor Mijkl , the
diaelastic polarizability [18,20,29]. These tensors provide the
excess elastic energy �E(r) due to the interaction of a point

TABLE I. Elastic constants from calculation in a unit cell.

Elastic constant Value

C11 299.5 GPa
C12 233 GPa
C44 133.6 GPa
S11 1.046 × 10−2GPa−1

S12 −4.58 × 10−2GPa−1

S44 7.61 × 10−2GPa−1

defect at r with a strain field εij (r):

�E(r) = −
∑
i,j

Pij εij (r) − 1

2

∑
i,j,k,l

εij (r)Mijklεkl(r), (4)

where εij (r) is the total strain field at the location r due to
both the point defect and any external stress. The total elastic
energy Eel of a system of volume V containing a single point
defect at r is then

Eel =
∑
i,j,k,l

V
1

2
εij (r)Cijklεkl(r) −

∑
i,j

Pij εij (r)

− 1

2

∑
i,j,k,l

εij (r)Mijklεkl(r), (5)

where Cijkl are the elastic constants of the host crystal. The first
term on the right-hand side describes the bulk elastic energy of
the host structure due to the total strain. The second and third
terms describe the interaction between the point defect and the
total strain. Hence, the elastic dipole is the linear response to
strain of a system containing a point defect, which is given
in the linear limit by the stress tensor of the system without
volume or shape relaxation:

P = −V σ (ε). (6)

The elastic dipole reproduces the symmetries of the point
defect it describes. A vacancy on a substitutional site of the
fcc structure of a pure nickel crystal has a cubic symmetry:
the elastic dipole is a scalar P = P1. It can be computed
from the stress tensor of an unstrained DFT calculation of
a defect. For a vacancy, we find P = −6.33eV, and this
value can be used to evaluate the vacancy relaxation volume
VV = P

K
, where K = 1

3 (C11 + 2C12) is the bulk modulus
obtained from the elastic constant presented in Table I. A value
VV = (−0.394 ± 0.005)Vat of the vacancy relaxation volume,
expressed in atomic volume, is found, in agreement with the
experimental value VV = −0.4Vat of Ref. [44] obtained by
diffuse x-ray scattering.

In pure Ni, during an atom-vacancy exchange along the
[011] direction, the saddle point configuration is monoclinic.
Figure 2 illustrates this situation with the jump of a vacancy
in the [110] direction. While the [100] and [010] directions
of the crystal are equivalent in that case, the [001] direction
is distinct. Hence, in the saddle point configuration the elastic
dipole has the form

P =
⎛
⎝

Pxx Pyx 0
Pxy Pyy 0
0 0 Pzz

⎞
⎠ , (7)
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with Pyx = Pxy and Pxx = Pyy . As a consequence, [001] strain
will have a different effect than a [100] or a [010] strain on the
frequency of an atomic jump in the [011] direction. Moreover,
while shear strain does not affect the formation energy of a
vacancy, it will affect its saddle point energy. The introduction
of a solute atom further reduces the symmetry of the system
unless it is placed on the axis of the solute-vacancy jump.

As the migration barrier is the difference between the
enthalpy in the saddle point configuration and the enthalpy
in the initial configuration, the first-order effect of strain
on the migration barrier is the difference between the two
elastic dipoles in the two configurations. This difference
can be captured by two different methods. A first method
is to compute a finite difference between the energies of
two strained cells in both the initial and the saddle point
configuration. Another method is to obtain the stress tensor
in both the initial and the saddle point configurations on an
unstrained cell, which is proportional to the elastic dipole
according to Eq. (6). The diaelastic polarizability corresponds
to the second derivative of the energy with respect to the
strain. Thus, it cannot be evaluated by using the stress tensor
of the unstrained cell. However, it can be evaluated by using a
finite-difference approach. The drawback of finite-difference
calculations is their CPU cost, as they require the use of
both unstrained and strained cells. As a consequence, in the
present work, finite-difference calculations are performed to
determine the range of validity of the linear approximation,
and the dependency of the migration barrier within that range
is obtained using the stress tensor.

D. Finite-size bias

The elastic dipole and diaelastic polarizability, as they have
been defined in this section, should be obtained by measuring
the stress on a volume embedded in an infinite crystal. The
periodic boundary conditions lead to interactions between the
stress fields generated by a point defect and its periodic images.
The impact of this bias has been evaluated by computing
the elastic dipole in 2 × 2 × 2 and 3 × 3 × 3 supercells for
different initial and saddle point configurations. Comparing
calculations in 2 × 2 × 2 supercells with calculations in
3 × 3 × 3 supercells, the amplitude of the different component
of the elastic dipole is systematically underevaluated by 10%.
Due to their computational cost, no calculations could be
conducted in supercells larger than 3 × 3 × 3 to provide more
accurate results. However, as shown in Ref. [45], the elastic
dipoles converge as 1/V, where V is the volume of the supercell.
Thus, the finite-size error due to a use of a 3 × 3 × 3 supercell
can be estimated to remain below 5%.

III. DFT RESULTS

A. Diffusion of Si in Ni in the absence of strain

First, the migration frequencies have been computed in the
unstrained case. Calculations were performed in the 3 × 3 × 3
cell to obtain the binding energy EB

d between the vacancy and
a Si atom at a distance d in terms of nearest neighbors. Let
E108Ni, E107Ni

1Si , E107Ni, and E106Ni
1Si,d be respectively the energy

of a system of pure Ni, of a system containing a Si atom, of a
system containing a vacancy, and of a system containing both;

TABLE II. Binding energies between the vacancy and the Si atom
at different distances.

Distance Binding energy (eV)

First NN −0.108
Second NN +0.004
Third NN +0.037
Fourth NN −0.008
Fifth NN +0.000

the binding energy EB
d is defined as the difference:

EB
d = E106Ni

1Si,d + E108Ni − E107Ni
1Si − E107Ni. (8)

Even at the fourth-nearest-neighbor site, both the vacancy and
solute share a common Ni neighbor. As shown in Table II,
a nonnegligible binding energy is found between vacancies
and solute atoms at first and third NN distance. Thus, 16
frequencies are required to describe flux couplings during the
diffusion of Si impurities [4].

The migration barriers of the 16 frequencies have been
computed and can be found in Table III, as well as the attempt
frequencies corresponding to the seven of them starting or
ending on a first-NN site. The difference between the attempt
frequencies computed is below 10%. For jumps of a Ni atom
from a first to a third NN sites of the Si atom or from a
third-NN site to a first-NN site, the attempt frequency is
similar to jumps in bulk nickel. As a consequence, attempt
frequencies for more distant jumps were not computed and a
value equal to that of the bulk is assumed. All the migration

TABLE III. Attempt frequencies and migration barriers of each
atomic jump involved in the diffusion of dilute Si in Ni in the absence
of stress obtained from direct DFT calculations [27] and using the
LIMB approximation. Values with an asterisk ∗ were considered to
be far enough from the solute to match the bulk value and were not
separately computed.

Event Frequency ν (THz) Emig (DFT) (eV) Emig (LIMB) (eV)

0 w
(0)
1 4.8 1.074

1 w
(2)
1 5.1 0.891

2 w
(1)
111 5.2 1.003 1.074

3 w
(1)
121 5.3 1.213 1.130

4 w
(1)
112 5.1 1.101 1.018

5 w
(1)
131 4.8 1.153 1.147

6 w
(1)
113 4.8 1.008 1.002

7 w
(1)
132 4.8∗ 1.091 1.091

8 w
(1)
123 4.8∗ 1.058 1.058

9 w
(1)
133 4.8∗ 1.089 1.074

10 w
(3)
1∞1 4.8∗ 1.128 1.128

11 w
(3)
1∞2 4.8∗ 1.066 1.072

12 w
(3)
1∞3 4.8∗ 1.068 1.056

13 w
(4)
11∞ 4.8∗ 1.028 1.020

14 w
(4)
12∞ 4.8∗ 1.077 1.076

15 w
(4)
13∞ 4.8∗ 1.112 1.093
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barriers of the vacancy-nickel atom exchanges are between
1.0 eV and 1.2 eV. However, the solute-vacancy exchange has
a significantly lower migration barrier, which is consistent with
the small size of Si atoms. These results can be used to test the
validity of the linearly interpolated migration barriers (LIMB)
approximation, introduced in Ref. [46] and also known as the
kinetically resolved activation barrier approximation [47]. This
approximation considers the perturbation to the bulk migration
barrier due to the impurity to be the average of the binding
energy in the initial and final configurations. The migration
barrier associated with a frequency w

(ζ )
abc is thus given by

E
mig,(ζ )
abc = Emig,(0)

a + 1
2

(
EB

b − EB
c

)
, (9)

where E
mig,(0)
a is the migration barrier for a jump in the same

direction far from the solute. For a number of frequencies,
this approximation appears in excellent agreement with the
direct DFT results. However, for some frequencies such as
w

(1)
111 or w

(1)
121, they disagree by more than 50 meV. As w

(1)
111 has

a high impact on kinetic correlations [4], this disagreement can
induce qualitative differences in the modeling of macroscopic
kinetic properties and the linearly interpolated migration
barriers should be avoided at least for jumps involving first-NN
sites.

The jump frequencies can be used to compute the Onsager
matrix and the diffusion coefficient of the solute impurities
in the dilute limit [5]. The term Dij of the diffusivity matrix
related to the chemical species i and j is directly related to the
Onsager matrix and the chemical potential

Dij =
∑

k

Lik

∂μk

∂cj

, (10)

where the sum is performed over all the chemical species k, μk

is the chemical potential related to k, and cj is the concentration
in j . In the dilute limit, the entropic contribution dominates
in the derivative of the chemical potential; at a temperature T

and an atomic volume V , the diffusion coefficient of silicon
impurities is then

DSiSi = kBT

V
LSiSi, (11)

where LSiSi is the silicon-related diagonal term of the Onsager
matrix. The Onsager matrix is obtained with the self-consistent
mean field method [3,48] by using the results in Ref. [4] where
kinetic correlations are truncated beyond the third-NN sites
of the third-NN sites. The diffusion coefficients obtained are
presented in Fig 3. An excellent agreement with experimental
Si diffusion coefficients is obtained, which confirms the
validity of some of the DFT values: as this quantity is mostly
sensitive to the vacancy formation energy, to the NN binding
energy, and to the w2

1 frequency, it cannot be used to confirm
the values of the other frequencies. This also shows good
agreement with our nonmagnetic treatment of Ni.

B. Effect of strain on the jump frequencies

1. Effect of the diaelastic polarizability

In order to evaluate the importance of the diaelastic
polarizability, the finite-difference method has been used,
applying the transformations defined in the Appendix to

FIG. 3. (Color online) Diffusion coefficient of Si impurities in
Ni as a function of the inverse temperature. Empty symbols are
experimental results from Refs. [49,50] while the solid blue line
is the result of the present work.

a 3 × 3 × 3 cubic cell with δ = 0.01. A comparison with
the effect of strain as computed from the elastic dipole is
performed. Figure 4 shows the effect of uniaxial strain on
the migration barrier corresponding to the w

(0)
1 and the w

(2)
1

frequencies of jumps in the [110] direction, as computed by
finite difference or by the elastic dipole. The two methods
provide results in excellent agreement, indicating that no
influence of the second order term could be captured by finite
difference calculations. Similar calculations performed for the
w

(1)
111,w

(1)
121, and w

(1)
112 frequencies confirmed this result. Hence,

it appears that the diaelastic polarizability can be neglected for
practical purpose in the Ni(Si) alloy and that finite difference
calculation are not necessary for strains below δ = 1% as
all the relevant information is provided by the elastic dipole,
which can be obtained by calculations on the unstrained cell.

FIG. 4. (Color online) Migration barrier as a function of uniaxial
strain. The filled (resp. hollow) symbols correspond to results
obtained by finite-difference calculation for the frequency w

(0)
1 (resp.

w
(2)
1 ). Solid lines show the slopes from the elastic dipole. Calculations

were performed in a 3 × 3 × 3 tetragonal cell under a uniaxial strain
εu(δ) either in the (100) or the (001) direction or a shear strain (110).
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FIG. 5. (Color online) Values of the elastic dipole of the migra-
tion barrier for the 16 different exchanges corresponding to an atomic
jump along the [110] direction (x = [100], y = [010], z = [001]).

2. Strain effect on the migration barriers

For any of the 16 different jumps in the [110] direction of
the unstrained system, the difference of elastic dipole between
the saddle point configuration and the initial configuration
determines the effect of strain on the migration barriers [51].
The values of the six components of the elastic dipole of the
migration barrier of each of the 16 different jump types are
displayed in Fig. 5 for a jump vector a

2 [110]. From these values,
the effect of strain on jumps along different directions can be
retrieved by rotation. As shown in Fig. 5 and in Table IV,
the elastic dipole shows little variations from one jump to
another. The strain dependency of the migration barrier thus
seems to be mostly independent of the position of the Si solute
atom. Moreover, the influence of shear strain on the migration
barriers appears to be negligible compared to the influence
of uniaxial strain. However, the jump direction has a large
impact on the migration barrier. For example, in the presence
of a strain tensor εij without shear, an w

(0)
1 jump in the [110] di-

rection will see a migration barrier E
mig,(0)
1 [110] = E

mig,(0)
1 +

Pxxε11 + Pyyε22 + Pzzε33, where E
mig,(0)
1 = 1.074eV, Pxx =

Pyy = −0.51eV, and Pzz = 7.20eV, while an w
(0)
1 jump in the

[101] direction will see a migration barrier E
mig,(0)
1 [110] =

E
mig,(0)
1 + Pyyε11 + Pzzε22 + Pxxε33.

TABLE IV. Elastic dipole of the migration barrier for a jump
in the [110] direction: average value over the 16 frequencies and
standard deviation.

Term Average (eV) Standard deviation (eV)

Pxx −0.44 0.23
Pyy −0.44 0.23
Pzz 7.21 0.26
Pxy −0.16 0.53
Pyz 0.02 0.23
Pxz 0.04 0.26

FIG. 6. (Color online) Attempt frequencies as a function of a
uniaxial strain εu(δ) either along the [100] or the [001] direction
for the frequencies w

(0)
1 and w

(2)
1 . The solid lines correspond to linear

fits.

3. Strain effect on the attempt frequencies

Similar to what has been presented for the migration barrier,
the effect of strain on the attempt frequencies can be obtained
by finite-difference calculations. Two frequencies, w

(0)
1 and

w
(2)
1 , are split in only two different frequencies by a uniaxial

strain. Figure 6 shows the corresponding attempt frequencies
obtained by finite-difference calculations in cells under a
volume-conserving uniaxial strain εu(δ). No contribution of
the strain at the second order could be identified. Similar
calculations performed for the w

(1)
111,w

(1)
121, and w

(1)
112 frequency

confirmed this result. Thus, the effect of the diaelastic
polarizability on the attempt frequencies was assumed to be
negligible in all cases.

The impact of strain on the attempt frequencies has been
investigated. For the five frequencies w

(0)
1 ,w

(2)
1 ,w

(1)
111,w

(1)
121,

and w
(1)
112 that are split into 15 unique frequencies under a

uniaxial strain, the attempt frequencies have been computed.
The results, presented in Fig. 7, show that the effect of
strain on the attempt frequencies remains limited in all cases,
with a variation by less than 10% for a volume-conserving
uniaxial strain εu(δ) with δ = 0.01. At temperatures below the
melting point the jump frequencies are mostly controlled by
the migration barriers; hence the effect of strain on the attempt
frequencies is of little consequence and can be neglected for
the calculation of strain effects on the diffusion properties of
Ni(Si).

IV. ELASTIC CAGE MODEL

In Ref. [30], Ardell and Prikhodko proposed a model
of stress effect on the migration barrier for vacancy-atom
exchanges in pure metals based on the so-called dynamical
theory of atom migration [52]. This model assumes that the
effect of stress on the migration is due to the strain that the
jumping atom induces in the saddle point position to atoms
of the “cage” surrounding the saddle point. The DFT results
obtained in this study can be used to evaluate the ability of this
model to predict the effect of strain on E

(0)
1 .

024306-6



DIFFUSION OF Si IMPURITIES IN Ni UNDER . . . PHYSICAL REVIEW B 90, 024306 (2014)

FIG. 7. (Color online) Relative variations of the attempt frequen-
cies with the amplitude of a uniaxial strain for the five frequencies
w

(0)
1 ,w

(2)
1 ,w

(1)
111,w

(1)
121, and w

(1)
112 numbered from 0 to 4. The different

values for a given atomic jump correspond to different orientations of
the jumping atom-solute-vacancy triangle with respect to the direction
of the strain.

During a jump along the [110] direction, at the saddle point,
the jumping atom passes through a rectangular “cage” of 4
atoms of dimension a in the [001] direction and a/

√
2 in the

[11̄0] direction as illustrated in Fig. 2. The diagonals of this
cage are the dense directions of the saddle point configuration,
and its length is affected by strain. Considering the volume-
conserving uniaxial strain εu(δ) along the z direction detailed
in the Appendix, the length of the diagonal changes by −2δ,
while under a [100] or [010] uniaxial strain, the diagonal length
increases by δ. An increase of the saddle point energy under
a strain along the z direction, and a proportional decrease for
a [100] or [010] strain, can thus be expected. Similarly, while
a [101] or a [011] shear strain does not affect the plane of the
cage at first order, the [110] shear strain contracts the diagonals
of the cage by δ, and an increase of the migration barrier
can be expected for jumps along the [110] direction, together
with a decrease for exchanges along the [11̄0] direction. These
situations are illustrated in Fig. 8. As a consequence, the overall
effect of strain on the jump frequencies highly depends on the
orientation of the jump with respect to the strain as already
observed in Sec. III B.

In the model of Ardell and Pridkhodko, by considering the
displacement of the atoms forming that cage, the variation of
the migration barrier with stress can be computed from the
elastic constants of the bulk crystal. Considering the diffusion
of a vacancy in bulk nickel under a uniaxial strain along the
[001] direction, the ratio of the variation �E

mig
[110] of strain on

the migration barrier of a jump in the [110] direction against
the variation �E

mig
[011] of the migration barrier of a jump in the

[011] direction is then according to this model

�E
mig
(110)

�E
mig
(011)

= −8C11 + 22C12

7C11 + 8C12
. (12)

To a stress σ in the [001] direction corresponds a strain S11σ

in the [001] direction and a strain S12σ in the [100] and [010]

FIG. 8. (Color online) Representation of the (11̄1) plane during
an atomic jump in the [110] direction in the absence of external strain
(a), in the presence of strain in the [100] direction (b), and in the [001]
direction (c). The filled circles are the nearest atom of the saddle point
and the dashed line between them emphasizes the cage diagonal; the
dashed boxes represent an area of the [111] plane before strain while
the solid boxes represent that same area after strain.

direction. Thus the ratio in Eq. (12) can also be written

�E
mig
[110]

�E
mig
[011]

= −PzzS11 + S12(Pxx + Pyy)

PyyS11 + S12(Pxx + Pzz)
. (13)

This model can be tested using the DFT results on Ni.
The elastic constants have been computed on a 1 × 1 × 1
supercell and the compliances are derived from them (see
Table I). The ratio of Eq. (13) is computed using the elastic

dipole
�E

mig
[110]

�E
mig
[011]

= −2.2, and is in good agreement with the value

�E
mig
[110]

�E
mig
[011]

= −1.9 predicted using Eq. (12) from the model of

Ardell and Prikhodko [30]. However, this model is currently
limited to the case of pure systems, and no comparison could
thus be performed in the case of the Ni-Si alloy.

V. CONCLUSION

In this work, DFT calculations have been performed to
study the effect of stress on the diffusion of Si impurities in Ni
by the vacancy-mediated mechanism. Using crystal symmetry,
the effect of a uniaxial and a shear strain only needs to be
computed to obtain the effect of an arbitrary strain in the linear
limit. In the case of the Ni(Si) alloy, second-order effects of
stress are measured to be negligible, justifying this approach.

Strain induces a splitting of the different migration events
involved in the diffusion of a dilute substitutional solute.
Hence, the study of the effect of a given strain tensor on
diffusion requires the knowledge of all the split migration
frequencies. However, explicit calculation of all the migration
enthalpies and attempt frequencies using strained cells proved
to be unnecessary, as the elastic dipole for the different
migration events on unstrained cells quantified the effect of
strain on the migration barriers. While this method could not
be applied to the attempt frequencies, their lesser influence
on the migration frequency and their limited dependency on
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strain allowed neglecting the effect of strain on them. Thus,
only a reduced number of attempt frequencies calculation are
required.

In pure Ni, the effect of strain found from DFT calculations
shows good agreement with a simple elastic model proposed
in Ref. [30]. In the presence of Si impurities, the effect of strain
on vacancy migration appears to be notably independent from
the position of the Si impurities. However, nothing indicates
that this property could be generalized to other impurities.
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APPENDIX A: STRAINED-CELL GEOMETRIES

In addition to the unstrained cubic geometry, three different
geometries have been studied: two volume-conserving ones

associated respectively with uniaxial and shear strains, and one
under volumetric strain to determine the effect of elementary
strains by finite difference. Starting from the relaxed cell, the
following stress tensor is used for calculation under volumetric
strain:

εv(δ) =
⎛
⎝

δ 0 0
0 δ 0
0 0 δ

⎞
⎠ . (A1)

Similarly, the volume-conserving strain tensor for uniaxial
strain relative to the cube axes 〈001〉 used in the calculations
is given by

εu(δ) =
⎛
⎝

δ 0 0
0 δ 0
0 0 (δ + 1)−2 − 1

⎞
⎠ . (A2)

This strain tensor lowers the symmetry of fcc Ni (space group
225) to BCT (space group 139). Finally, the following stress
tensor is used for calculation under shear strain:

εs(δ) =
⎛
⎝

0 δ/2 0
δ/2 0 0

0 0 (δ/2)2

1−(δ/2)2

⎞
⎠ . (A3)
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