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Bound states in waveguides and bent quantum wires. I. Applications to waveguide systems
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It has been shown that in quantum wires which contain bends there will be one or more bound states for
electrons placed in such systems. Bound states have been observed in quantum wires, but detailed mapping of
such states is difficult. However, there is a one-to-one correspondence between wave functions of free electrons
in two-dimensional~2D! systems, and electric fields of TE modes in rectangular waveguides with the same
cross section as the 2D system. We therefore construct bent waveguides, find the frequencies at which confined
EM fields occur, and map out the electromagnetic energy density there. We compare the experimental results
with theoretical predictions of bound state energies and eigenfunctions. The geometry has been chosen to
correspond to two-dimensional systems for which quantum wire experiments have been carried out. In such
systems, we can predict the number and location of the bound states in the system; in addition, we can predict
the electric and magnetic fields for the confined TE modes in this system. We show very good agreement
between our predictions and experiment for bent waveguides in this geometry.@S0163-1829~97!04416-0#
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I. INTRODUCTION

It is possible to produce very narrow two-dimension
conducting surfaces, or ‘‘quantum wires,’’ which allow ele
trons to propagate in the channels formed by these surfa
but require the electron wave function to vanish on
boundary of the surface. As the width of these quant
wires is roughly equal to the de Broglie wavelength of a c
electron, wave effects will dominate the physics of the
systems. Quantum wires have been used extensively to s
quantum interference effects.1–5 The simplest model is a sur
face of infinite extent with a bend in the center and op
straight ends. Such surfaces have no ‘‘classically forbidde
region ~a classical particle could roll freely through such
system!, so the discovery by Schult, Ravenhall, and Wy6

~and earlier by Lenzet al.7! that such systems possess
bound state was rather surprising. Goldstone and Jaffe8 ~and
Exner9,10! then proved the remarkable result that at least
bound state exists forall two-dimensional surfaces of con
stant width ~except surfaces of constant curvature, wh
have no bound state!. As is well known, a ‘‘bulge’’ in a
two-dimensional surface can be mapped into one dimens
the transverse bulge then appears as an effective local a
tion, which in one dimension always produces a bound st
550163-1829/97/55~15!/9842~10!/$10.00
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However, it was surprising to find that a bend produces
effective attraction similar to a bulge.

The existence of these bound states can be unders
qualitatively. Consider a quantum wire containing a bend
previous papers11,12 we examined the properties of system
containing a single bend. In this paper we will examine t
case of a system with two right-angle bends as shown in
1. The width of the straight sections isW and the height of
the bend isH. For the moment consider the case where
straight sections of the wire are infinitely long. The wa
function for the electron satisfies the equation

~¹21k2!c~x,y!50, cuS50. ~1.1!

In Eq. ~1.1!, the wave numberk is related to the energyE by
k252m*E/\2. In either straight section the requirement th
the wave function vanish on the boundary, and the sep
bility of the Hamiltonian, forces they dependence of the
wave function to be of the form sin(npy/W) for integern.
This transverse quantization condition produces an ene
threshold; the lowest energy allowed for free propagation
Ethr5(\p)2/(2m*W2). Both the extra space in the bend~s!
of the wire, and the bending itself, produce an effective
traction which supports electron bound state~s! in the region
of the bend~s!. The wire of Fig. 1 will have one or two boun
9842 © 1997 The American Physical Society
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55 9843BOUND STATES IN WAVEGUIDES . . . . I. . . .
states, which appear as isolated states with energy be
Ethr . The bound state wave functions will be largest in t
vicinity of the bend, and fall off exponentially with the dis
tance from the bend region.

Bent quantum wires are thus examples of quantum s
tems whose bound states do not arise from the ‘‘tradition
picture, where a binding potential creates classically allow
and forbidden regions. Here the boundary conditions~van-
ishing of the wave function on the boundaries of the wi!
give rise to transverse quantization conditions which prod
a minimum threshold energy for continuum solutions. Loc
ized bends or bulges in these wires then produce effec
local attractive forces which give rise to bound states. As
effective attraction in a bent wire is~to lowest order! propor-
tional to the square of the curvature of the wire,8 the magni-
tude of the binding energy increases as the curvature
creases.

In previous papers11,12 we have considered bent two
dimensional systems and their analogy to rectang
waveguides. If one constructs some two-dimensional cu
s in thexy plane, which possesses a scalar fieldc satisfying
the Helmholtz ~or Schrödinger! equation @¹21k2#c50,
with cuS50 on the boundaryS of the curve, then one ca
produce a rectangular waveguide by translating the curvs
normally in thez direction.E andB fields can be constructe
from c as follows:

E~x,y!5 ik ẑc~x,y!, B~x,y!52 ẑ3¹c. ~1.2!

TheE andB fields of Eq.~1.2! will satisfy Maxwell’s equa-
tions and boundary conditions for TE modes in t
waveguide,13 where the electron wave numberk is related to
the frequencyf5v/2p by

FIG. 1. Simplified model for bent quantum wire. Infinitely lon
wire with two right-angle bends, the width arbitrarily normalized
1 and the aspect ratio~height/width ratio! R. ~a! The aspect ratio
R.2 is the ‘‘quantum bend discontinuity’’ case of Ref. 17. For t
purpose of calculations the wire is divided into three sections
beled I ,II , and III , respectively.~b! The aspect ratio 1,R,2 is
the ‘‘quantum bend continuity’’ case. The wire is divided into se
tions labeledI and II , respectively.
w
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k→
2pAme f

c
. ~1.3!

Therefore if there exist bound states of the Schro¨dinger equa-
tion for particles moving in the two-dimensional curves
~i.e., solutions of the wave equation below the minimum e
ergy for free propagation of waves in the wire!, there will be
analogous confined TE modes~solutions ofE andB fields
with frequencies below the cutoff frequency for the wav
guide!, and the confinedE field of Eq.~1.2! will be described
by the same scalar functionc which constitutes the bound
state wave function of the electron in the quantum wire,
Eq. ~1.1!.

In our previous work, rectangular waveguides were co
structed and both bound states andE-M fields were
measured.11,12 Microwaves were pumped into the center
bent waveguides, and the ratio of reflected to incident po
was measured there. At the frequency corresponding to
confined state, a sharp minimum was observed in the
flected power, representing resonant absorption of mic
wave power. At other frequencies below cutoff almost 100
of the power was reflected back to the generator. The fie
were measured by moving a small metal sphere inside
waveguides, and observing the shift in resonant frequenc
a function of the position of the sphere in the waveguid
Both bound state positions and fields were found to ag
very well with theoretical predictions.

Although one can demonstrate experimentally the pr
ence of electron bound states in bent quantum wires, it is
easy to measure the details of electron wave functions
such small systems. In this paper, we investigate an alte
tive method for studying the detailed properties of bou
states in bent systems. Theoretically, we derive the trans
sion coefficients for free particles in bent two-dimension
systems. Experimentally, we measure the properties of c
finedE fields in bent rectangular waveguides. We constr
rectangular waveguides with two bends, and we locate
measure confined TE modes in such waveguides. Hav
found the confined modes, we map out the resulting elec
magnetic energy density in the waveguide.

Because of the one-to-one correspondence between e
functions for waves in two-dimensional surfaces and
modes in waveguides of the same shape, the observatio
confined TE modes in waveguides below the cutoff f
quency predicts the existence of bound electron states in
quantum wires. Furthermore, the electric field we measur
identical to the wave function for the electron bound states
a quantum wire of the same geometry as the waveguide.
show that the mapped fields, and location of confined mo
in the waveguides, agree quite well with our theoretical p
dictions.

We focus our attention on the case of a quantum w
with two right-angle bends, as shown schematically in Fig
In this paper, we show how the number of bound sta
binding energies, and properties of the eigenfunctions
pend on the geometry of systems with two bends.

Quantum wires with this geometry have been the sub
of both experimental and theoretical investigations. W
et al.14 constructed quantum wires with double right-ang
bends, with a shape essentially that of Fig. 1. They measu
conductance vs gate voltage in such structures, and obse

-
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9844 55CARINI, LONDERGAN, MURDOCK, TRINKLE, AND YUNG
at least one peak in conductance below the threshold for
electron conduction. They interpreted these peaks as e
trons tunneling through impurity sites in the constriction,
was discussed by McEuenet al.,15 who measured conduc
tance vs gate voltage for electrons in a straight quan
wire.

This conclusion was challenged by Wang a
collaborators.16,17They carried out theoretical calculations
conductance in quantum wires with two bends,16 and with
2N bends.17 These authors claim that the subthresh
peak~s! observed by Wu and collaborators are due to el
trons tunneling through bound states in the wire.

In this paper, we concentrate on the location and prop
ties of the bound states in a waveguide or quantum wire w
two right-angle bends. Our paper is organized as follows
Sec. II we calculate bound state energies and transmis
coefficients for this geometry. At this stage we make
simplifying assumption that the legs of the wire are infinite
long. In this case, we show that all properties of the bou
states are determined by the aspect ratioR of the wire ~the
ratio of the height of the wire to its width, shown schema
cally in Fig. 1!. In Sec. III we discuss the experimental me
surement of states in a rectangular waveguide with
bends, and we compare the experimental results with
theoretical predictions. In Sec. IV we draw conclusions a
discuss possible future experiments.

In the following paper,18 we apply the theoretical tech
niques outlined in this paper to the calculation of cond
tance for electrons in bent quantum wires. The situation
more complicated than the simple model used in this pa
We must take into account the finite length of the wire
consider the effect of the applied gate voltage on the cond
tance, and consider the many physical effects which occu
scattering above the conductance threshold. The signatu
bound states in such systems is transmission below the m
mum energy for free propagation, due to electron tunne
through the bound states. In this second paper, we com
our results with both the data of Wuet al.and the theoretica
calculations of Wang and collaborators.

II. BOUND STATES FOR ELECTRONS
IN BENT TWO-DIMENSIONAL SYSTEMS

We consider the case of a quantum wire with two rig
angle bends. A useful first approximation is to examine
case of an infinitely long two-dimensional system with tw
bends, as shown in Fig. 1. We define the horizontal a
vertical directions asx8 andy8, respectively, and the width
and height of the wire areW and H. The electron wave
function in the quantum wire satisfies the Schro¨dinger
equation 2(\2/2m* )@(]2/]x82)1(]2/]y82)#c(x8,y8)
5Ec(x8, y8), wherem* is the electron effective mass. Wit
no loss of generality, we can transform to the dimensionl
coordinates,

x5x8/W; y5y8/W; R5H/W,

k25
2m*EW2

\2 . ~2.1!

In the coordinates (x,y), the electron wave function
c(x,y) satisfies the Helmholtz equation (¹21k2)c(x,y)
ee
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50. Here the dimensionless quantityR5H/W, the length of
the straight section between the two bends, is the aspect
of the wire.

From the theorems of Exner9,10 and Goldstone and Jaffe,8

such a system is guaranteed to have at least one bound
The wave functions for an electron in a quantum wire can
obtained by many different techniques; series exp
sions,11,19,20relaxation methods,12 transfer matrix methods,21

or the quantum transmitting boundary method.22 We use a
series expansion method to calculate the bound state w
functions. Note that the right half of the wire can be mapp
onto the left-half side by reflection about the linesx51/2 and
y5R/2. Since the Hamiltonian is symmetric under these
flections, the eigenfunctions for this system are either sy
metric or antisymmetric under this transformation. Therefo
we need solve for the wave function on half the wire, a
impose the correct symmetry on the eigenstates.

For infinitely long wires, the properties of the boun
states are a function only of the aspect ratio,R. Wang and
collaborators16,17divide these bent wires into two categorie
When R,2, as shown in Fig. 1~b!, it is possible for an
electron to travel in a straight line path through the wi
They call this a ‘‘double bend continuity.’’ ForR>2, no
straight line path is possible. They call this geometry
‘‘double bend discontinuity.’’

We will first examine the case when the aspect ra
R>2, the ‘‘double bend discontinuity’’ case of Wang an
collaborators; this is shown schematically in Fig. 1~a!. We
will outline the solution here; the solution in the ca
1,R,2 is given in the Appendix. We solve for the boun
states in the wire by dividing it into three sections as sho
in Fig. 1~a!. Region I is defined by@x>1, 0<y<1#; we
expand the wave functionc I in Cartesian coordinates, wher
the wave function boundary conditions are

c I~x,y!uy505c I~x,y!uy5150; c I~x,y! →
x→`

0. ~2.2!

Separation of variables in Cartesian coordinates then g
the series solution

c I~x,y!5 (
n51

`

Ansin~npy!e2anx, ~2.3!

wherean5An2p22k2.
Region II is defined by@0<x<1, 0<y<1#. In region

II the boundary conditions are

c II ~x,y!uy505c II ~x,y!ux505c II ~x,y!ux5y5150. ~2.4!

The following wave function satisfies the boundary con
tions of Eq.~2.4! in this region:

c II ~x,y!5 (
n51

`

@Bnsin~npy!sinh~anx!

1Cnsin~npx!sinh~any!#. ~2.5!

RegionIII is defined by@0<x<1, 1<y<R21#. In region
III the boundary conditions for the symmetric (S) and anti-
symmetric (A) wave functions are
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c III ~x,y!ux505c III ~x,y!ux5150,

c III
S ~12x,R2y!5c III

S ~x,y!,

c III
A ~12x,R2y!52c III

A ~x,y!. ~2.6!

The following wave function satisfies the boundary con
tions of Eq.~2.6! in this region,

c III ~x,y!5 (
n51

`

Dnsin~npx!Fn@an~y2R/2!#, ~2.7!

where
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Fn
S~ t !5cosh~ t ! ~n odd! 5 sinh~ t ! ~n even!,

Fn
A~ t !5sinh~ t ! ~n odd! 5 cosh~ t ! ~n even!.

~2.8!

The coefficients are determined from the conditions thac
and its normal derivatives be continuous at the bounda
between regionsI , II , andIII .

To solve, we truncate the~infinite dimensional! expan-
sions atN basis functions. The resulting equations can
expressed as anN3N matrix equation; it is straightforward
to show that the condition for a bound state is Det(Z)50,
whereZ[TS21, and
Tnk5
kp~21!kdnk

an$sinh~an!Fn11~an@12R/2# !/Fn~an@12R/2# !2cosh~an!%
,

Snk5
~21!k11kpexp~2an!dnk

an
,

dnk5
~21!n11 2npsinh~ak!

ak
21~np!2

. ~2.9!
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m

m
-
ed
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The bound states occur at those values ofk2 for which
DetuZ(k2)u50. Once we have found the relevant values
k2, we can determine the expansion coefficients and rec
struct the wave functionsc for each bound state. In ou
calculations we have truncated our expansion atN510. We
find that both the bound state energies and wave funct
are stable and relatively accurate with this small numbe
expansion coefficients.

In Fig. 2 we show the bound state energies as a func
of the aspect ratioR. The continuum begins atk25p2 @see
Eq. ~2.3!#; therefore we plot the parametere5k2/p2. As
R→1, e→1. ForR,2.5, only the symmetric state is boun
the antisymmetric state is unbound for smaller values ofR.
The bound state wave function has a single peak centere
the middle of the double bend; in Fig. 3~a! we plot the den-
sity contours for the symmetric bound state correspondin
R52. AsR increases from 1, the binding energy increas
reaching a maximum forR'1.7. AsR increases further, the
binding energy then decreases. ForR.2.5, both symmetric
and antisymmetric bound states appear. Both the symm
and antisymmetric bound state wave functions have a pea
each bend of the quantum wire. In Figs. 3~b! and 3~c!, we
plot the wave function contours for the symmetric and an
symmetric bound states, respectively, whenR53.

For very large values ofR we see from Fig. 2 that both
symmetric and antisymmetric bound states approach
same energy,e'0.930 ~this value ofe corresponds to the
bound state energy for an infinitely long wire of unit wid
with a single right-angle bend11!. In this case, the bound sta
wave function is very small except for one peak in ea
right-angle bend; in Figs. 4~a! and 4~b! we show density
plots for the symmetric and antisymmetric bound states,
spectively, whenR56.
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The number of bound states, and their locations, are co
pletely determined by the geometry of the bent quantu
wire. We are studying the case of a long wire with two
right-angle bends. Provided that the length of the quantu
wire with two bends is much longer than the other dimen
sions, the bound state properties are completely determin
by the widthW of the wire and the aspect ratioR5H/W. For
R,2.5, there is only a single bound state; forR.7, the two
bound state energies coalesce so that the symmetric and
tisymmetric states appear at essentially the same energy.

Wang, Berggren, and Ji16 and Wang17 studied electron

FIG. 2. Bound state eigenvalues in bent quantum wire of Fig.
as a function of the aspect ratioR5H/W. The bound state energy is
defined asE[(\p)2e/(2m*W2). Plot ofe vsR for bound states in
wire. Solid curve: symmetric bound states; dashed curve: antisy
metric bound states.
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9846 55CARINI, LONDERGAN, MURDOCK, TRINKLE, AND YUNG
conductance in quantum wires with two bends. They exa
ined electron tunneling through bound states in these qu
tum wires. Many of our results agree with the conclusions
Wang and collaborators. We agree that for sufficiently la
values of aspect ratioR, both the symmetric and the antisym
metric bound state wave functions are peaked in the cor
of the wire. We also find that with increasingR, the distance
in energy between the symmetric and antisymmetric st
decreases.

However, we disagree with Wang and collaborators
one respect. They state that all ‘‘double bend discontinui
geometries, i.e., all wires with aspect ratioR.2, should
have both a symmetric and an antisymmetric bound state
can be seen from Fig. 2, no true antisymmetric bound s
exists forR,2.5; for these geometries, the antisymmet
state is in the continuum.

FIG. 3. Calculated contour plots for amplitudes of bound st
wave functions in a long wire with two bends.~a! Symmetric bound
state with the aspect ratioR52; ~b! symmetric bound state for wire
with the aspect ratioR53; ~c! antisymmetric bound state for wir
with R53. The positive values of the wave function have the lig
est shading; shading becomes progressively darker as the val
the wave function decreases.
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III. EXPERIMENTAL MEASUREMENTS
OF CONFINED MODES IN BENT WAVEGUIDES

A. Experimental techniques

As we discussed in the Introduction, we can construc
rectangular waveguide with two bends, whose cross s
tional area is given by Fig. 1. Maxwell’s equations for T
modes in this waveguide are satisfied byE and B fields
which have the formE5 ik ẑc(x,y), B52 ẑ3¹c(x,y).13

The scalar fieldc(x,y) satisfies the Helmholtz equatio
@¹21k2#c(x,y)50, with cuS50 on the boundaryS of the

e

-
of

FIG. 4. Contour plots for amplitudes of bound state wave fu
tions in long wire with two bends.~a! Symmetric bound state with
the aspect ratioR56; ~b! antisymmetric bound state for wire with
R56. The notation is that of Fig. 3.
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55 9847BOUND STATES IN WAVEGUIDES . . . . I. . . .
waveguide. The relation between the wave numberk and
frequency is given in Eq.~1.3!.

The scalar fieldc for the waveguide is exactly the solu
tion c of the Schro¨dinger equation for an electron in a qua
tum wire, as given in Eq.~1.2!. Therefore, since there exis
bound states of the Schro¨dinger equation in the bent quantu
wire, there will be analogous confined TE modes below
cutoff frequency for the waveguide, and the confinedE field
will be completely described by the quantum wire bou
state wave functionc.

To observe the confined electric fields in an electrom
netic waveguide with two right-angle bends, we construc
a finite version of the waveguide structure schematica
shown in Fig. 1. With this system, we could continuous
vary the aspect ratio,R5H/W over the range 1,R,6,
measure the frequencies for the bound states, and map
electromagnetic energy density for the bound states.

The structure was made of two pieces of machined a
minum. Figure 5~top! shows one of the pieces; the other
its mirror image. The darkly shaded area is 0.635 cm hig
than the lighter areas. When the second piece is inverted
empty space between the plates forms a waveguide do
bend, as shown in the bottom part of the figure. The wa
guide width isW 51.905 cm, and its depth isD5 0.635 cm.
Relative motion of the two plates in the direction of th
double arrow produces a continuous variation ofH while
keepingW fixed. The joints at the outside corners of th
waveguide bends do not affect the modes because both

FIG. 5. Schematic view of the waveguide structure used in
experiments. The structure was made from two half-inch alumin
plates. Top: one of the machined aluminum plates; the other i
mirror image. The shaded area is 0.635 cm higher than the lig
area. The black dot is a clearance hole for a coaxial cable. Bot
schematic view of the assembled structure. The space betwee
two plates, shown in white, forms the double bend structure.
waveguide width isW51.905 cm. The distance between the ben
is continuously variable by sliding the two plates along the a
indicated by the double arrow.
e
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electric and magnetic fields vanish at such a corner. Ho
ever, since microwave surface currents flow elsewhere
tween the two plates, the waveguide structure must
clamped together to ensure good electrical contact.

In such a structure, propagating waves with frequenc
below c/2D ~5 23.6 GHz here! must only have a nonzero
component of the electric field perpendicular to the lar
plates in order to satisfy the boundary conditions on the s
rounding conducting surfaces. The magnetic field must b
the xy plane.

We measured the resonant frequencies using the s
method as we have previously described.12 Small holes~the
black dots in Fig. 5, just outside the bends! provide clearance
for 0.1419 semirigid coaxial lines. We place a coaxial lin
~with its center conductor extending about 0.5 cm to form
antenna! through one of the holes. We can vary the degree
which the line radiates into the waveguide structure by
amount of protrusion of the antenna. A Hewlett-Packa
8510B network analyzer connected to the coax sends
microwave power to the antenna and measures the refle
power as a function of frequency. Sharp drops in the
flected power occur for the bound state frequencies.11

The cutoff frequency for the lowest propagating mode
the waveguides, TE01, is nominallyc/2W57.87 GHz. We
determine the actual cutoff frequency experimentally by
justing our structure so thatR51 to form a long, straight
cavity with the same width,W, and a length,L5 27.30 cm.
We then measure the frequencies of the first few TE01p

modes, f (p). A linear fit to the data @ f (p)#25 f co
2

1p2(c/2Leff)
2, gives f co5(7.85060.003) GHz and

Leff527.05 cm~the ends of the cavity are rounded with rad
5 0.953 cm, which makesLeff somewhat shorter than th
physical length!.

Once we can measure the resonant frequency, we can
out the field distribution for the bound states for a few re
resentative values ofR. The simple two-dimensional map
ping procedure is a technique which has been known
some time,23 and which has been beautifully refined b
Sridhar.24 In this method the resonance is perturbed with
small steel ball~1/89 diameter! located at a known position
within the waveguide bend and then the change in the re
nant frequency of the mode as a function of positio
D f (x,y) is measured. We locate the steel ball~with a preci-
sion of about 1 mm! on the vertices of a 0.3175 cm two
dimensional grid with a small magnet.

In a previous paper12 we derived a formula for the pertur
bation in the resonant frequency produced by the presenc
a metal ball of radiusr :

D f ~x,y!

f 0
52

4pr 3

2DW2 SCuc~x,y!u2

2
1

2k2 FU ]c~x,y!

]x U21U ]c~x,y!

]y U2G D . ~3.1!

In Eq. ~3.1!, c is the normalized wave function associat
with the bound state being measured. The dimension
constant,C, depends on the relative size of the ball and t
depth of the waveguide,D, but is greater than 2.4 in genera

Moving the steel ball allows us to map out the electric a
magnetic fields in the structure, as the positions of the b
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that produce local minima in the resonant frequency o
mode correspond to antinodes of the electric field for t
mode, and positions that produce local maxima in the re
nant frequency correspond to antinodes of the transv
magnetic field strength.

B. Bound state frequencies as a function ofR

In Fig. 6 we plot the experimental values for the symm
ric and antisymmetric bound state eigenvalues as a func
of the aspect ratioR of the bent waveguide. We observe
symmetric bound state below the cutoff frequency (f co, in-
dicated by the solid horizontal line! for all values ofR.1.
We observe an antisymmetric bound state forR>3. As we
had predicted~see Fig. 2!, for large values ofR the symmet-
ric and antisymmetric frequencies approach each o
closely. ForR,2, the symmetric bound state frequency h
a minimum and then rapidly increases to the cutoff f
quency asR→1. For R,4, the antisymmetric frequenc
rapidly approachesf co and we cannot follow the state belo
R53. However, it certainly follows our theoretical result
which predict that no antisymmetric bound state will ex
for R,2.5.

The theoretical values are plotted as dashed lines in
figure. These are calculated asf bound5 f co„Ebound(R)/Ethr…,
whereEbound(R) are the calculated bound state energies,
Ethr5(\p)2/(2m*W2) ~these are the curves shown in Fi
2!. For large values ofR, both frequencies approach th
bound state frequency for an isolated 90° bend~about
0.966f co).

11 The shapes of the theoretical curves and a l

FIG. 6. Bound state frequencies as a function of the aspect
R5H/W in the double bend waveguide structure of Fig. 5. T
symbols represent the experimental results for the symmetric~filled
circles! and antisymmetric states~open circles!. The lines represen
the theoretically determined resonant frequencies calculated
the ratio of the bound state energy and the threshold energy for
propagation:f bound5 f co(Ebound/Ethr)

1/2. The TE01 cutoff frequency,
f co, was determined to be 7.85 GHz and is shown by the s
horizontal line. The theoretical value for the bound state freque
of an isolated 90° bend of the same width (f 90'0.966f co) is indi-
cated by the dashed horizontal line.
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drawn through the data points are nearly identical. A shift i
the value of the cutoff frequency of 0.013 GHz puts th
theoretical line on top of the data points. We do not unde
stand the source of this shift, but it amounts to less tha
1/500 of f co.

C. Mapping the bound states

In Fig. 7~a!, we show the results of field mapping in a
waveguide with two bends where the aspect ratio isR52. In
this case, there is only a single confined mode. TheE field
for this mode is symmetric about the center of the wave
guide, with a single peak in the center and an exponent
decrease along the legs of the waveguide@this corresponds to
the case shown in Fig. 3~a!#. The underlying grid of data had
a spacing of 1/6 of the waveguide width. The graph is shad
so that darker~lighter! regions are those with a negative
~positive! frequency shift~e.g., regions of relatively large
electric field energy density appear darkest and those of lar
magnetic field energy density appear lightest!. The largest
electric energy density occurs centered between the tw
bends. The largest magnetic energy density occurs where
surface current densities are greatest near the adjacent s
walls of the waveguide, and also near the location of th
antenna, on the right waveguide section.

tio

m
ee

d
y

FIG. 7. ~a! Experimentally measured contour plot of the reso
nant frequency shift for the double bend waveguide structure wi
the aspect ratioR52.0. The shading is light for the positive fre-
quency shift~relatively large magnetic field energy density! and
dark for the negative frequency shift~relatively large electric field
energy density!. There is a single maximum in the electric field
energy density centered between the two bends.~b! Theoretical
prediction for the contour plot of the resonant frequency shift fo
the bound state forR52 as predicted from Eq.~3.1!.
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In Fig. 7~b! we show the theoretical calculations for th
resonant frequency shift using Eq.~3.1! with
r 3/(DW2)51/576 andC52.46.12 Comparing the two halves
of the figure, we find excellent quantitative and qualitati
agreement between theory and experiment. The only p
where there appears to be a systematic difference betw
theory and experiment is down the straight legs of the wa
guide, where the experimental measurements fall off so
what less rapidly than theory. The theory predicts a ma
mum electric energy density approximately 10% greater t
found in our experiment, so that the theoretical plot has
more dark contour than the experimental result.

In Fig. 8~a! we show the field mapping for the symmetr
bound state wave function corresponding to aspect r
R53. For this case we predict a peak of the electric field
each of the corners of the wire@this corresponds to the situ
ation shown in Fig. 3~b!#. These peaks are seen clearly in t
data. Again, there is excellent quantitative agreement
tween the theory, as shown in Fig. 8~b!, and experiment.

In Fig. 9~a! we show experimental results for the fie
mapping for the antisymmetric bound states in a wire w
R53 @this is the case shown in Fig. 3~c!#. The bound state
wave function for this configuration has a single node n
the center of the waveguide. Once again, the experime
measurements are very close to the theoretical predict
shown in Fig. 9~b!. Comparing the shapes of the symmet
~Fig. 8! and the antisymmetric states withR53, we see that

FIG. 8. ~a! Experimentally measured contour plot of the res
nant frequency shift for the lower frequency confined state i
double bend waveguide structure with the aspect ratioR53.0. This
state is symmetric about the center of the waveguide.~b! Theoreti-
cal prediction for the contour plot of the resonant frequency s
for the symmetric bound state forR53. The notation is that of Fig
7.
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the antisymmetric state extends much farther down
straight sections. The antisymmetric frequency is mu
closer than the symmetric frequency to the cutoff frequen
for the TE01 propagating mode, and therefore has a mu
longer decay length in the waveguide.

IV. CONCLUSIONS

In the past few years it has been realized that quan
particles moving in bent two-dimensional systems sho
generally exhibit bound states, which arise from the bend
the system. Thus, electrons moving in narrow ‘‘quantu
wire’’ structures should possess bound states. Recentl
has been possible to demonstrate experimentally the e
tence of these states. However, the size of these sys
makes it difficult to obtain detailed measurements of
properties of electrons in such bound states. In this paper
make model calculations of such bent structures, and
compare our predictions with experimental data for a cert
geometry.

We first derived formulas for wave functions in quantu
wires with two right-angle bends. From these formulas o
can determine the number and location of bound states.
bound states have the following properties, which can
seen from Fig. 2: for 1,R,2.5, only the symmetric bound
state exists. For 1,R,1.7, the binding energy increases
the aspect ratio increases; for larger values ofR, the binding
energy of the symmetric~antisymmetric! state decreases~in-
creases! with increasingR. For large values ofR, the anti-
symmetric and symmetric binding energies asymptotica

-
a

ft

FIG. 9. ~a! Experimentally measured contour plot of the res
nant frequency shift for the antisymmetric confined state in
double bend waveguide structure with the aspect ratioR53.0. Note
the node in the electric energy density centered between the
bends.~b! Theoretical prediction for the contour plot of the resona
frequency shift for the antisymmetric bound state forR53. The
notation is that of Fig. 7.
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approach the identical valuee'0.930; this is the binding
energy for a wire with a single right-angle bend.

Because of the limited data for these quantum wires,
used the one-to-one correspondence between wave func
for electrons moving freely in a quantum wire, and the el
tric field for TE modes in a rectangular waveguide, who
cross-sectional area has the same shape as the quantum
Electron bound states are characterized by wave funct
which are localized in the vicinity of the bend, and which fa
off exponentially with distance along the wire. The corr
sponding electric fields produce electromagnetic field mo
below the cutoff frequency for the waveguide; the elect
fields are also localized around the bend region and sh
fall off exponentially away from the bend region.

Having shown this correspondence, we construc
waveguides with this shape, and we demonstrated the l
tion of the confined states by measuring the ratio of reflec
to incident powerR( f ) as a function of frequencyf for mi-
crowaves. The bound state appeared at that frequency w
a sharp minimum inR( f ) was observed. The field distribu
tions inside these waveguides were measured by movin
small metal sphere inside the waveguide and observing
shift in resonant frequency as a function of the position
the sphere. Although this process measures a combinatio
theEz andHt fields, the maximum and minimum frequenc
shifts correspond to antinodes ofHt andEz , respectively.

We also derived a simple formula which related the re
nant frequency shift to the electric and magnetic field den
ties in the waveguide. Qualitatively we obtained good agr
ment between theory and measurements. Quantitatively
found very good agreement between theoretical predict
of the maximum frequency shifts~antinodes inHt); how-
ever, theoretical predictions of the minimum frequency sh
overpredicted experimental results by 25–35 %.

Perhaps the most interesting thing about such state
bent waveguides is that they do not seem to have been
dicted or measured until the past few years,11,12 despite de-
cades of research on the properties of waveguides. In m
waveguides the practical interest is in the transmission
reflection well above the cutoff frequency, and the prese
of confined states below the cutoff frequency will have
influence on transmission properties of states above the
off.

Experimental studies have been carried out for quan
wires with two bends by Wu and collaborators.14 Wang and
collaborators16,17 carried out theoretical calculations of th
conductance for electrons in this geometry, and compare
to these experimental results. The geometry of
waveguides was chosen to correspond to that studied by
et al.and Wang. In the following paper,18 we will extend our
discussion to treat the conductance in quantum wires of
geometry. By comparing our results to those of Wuet al.and
Wang, and using our understanding of such systems obta
from our work with waveguides, we will assess the ro
played by the electron bound states of those quantum w
on the observed conductance near threshold.

In conclusion, we have shown that theoretical calculatio
give very good agreement with experiments of confined e
tromagnetic fields in bent waveguides. We showed that
number of confined electric field modes~i.e., bound states!,
and their locations, are determined by the geometry of
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waveguide. We also showed that the electric and magn
fields in such confined modes could be accurately predic
from theory. This gives us confidence in applying the sa
theoretical techniques to electron conductance in quan
wires of the same geometry.
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APPENDIX: BOUND STATES IN A BENT WIRE
WHEN 1<R<2

To find bound states and wave functions in a bent qu
tum wire when the aspect ratioR is in the range 1,R,2,
the boundary matching conditions outlined in Sec. II must
modified. In Fig. 1~b! we show a picture of such a wire
which we have divided into three regions. The wave funct
must be either symmetric or antisymmetric under reflect
about the linesx50 andy5R/2. The bound state wave func
tions will be symmetric under these reflections, conseque
we need only solve for the wave functions in regionsI and
II . Wave functions satisfying the appropriate boundary a
symmetry conditions have the form

c I~x,y!5 (
n51

`

Ansin~npy!e2anx ~x>1/2, 0<y<R!,

c II ~x,y!5 (
n51

`

BnsinS npy

R D cosh~bnx! ~n odd!

5 (
n51

`

BnsinS npy

R D sinh~bnx! ~n even!

~21/2<x<1/2, 0<y<R!. ~A1!

In Eq. ~A1!, we havean5pAn22e andbn5pAn2/R22e.

FIG. 10. Contour plot of the calculated wave function for t
electron bound state in wire with the aspect ratioR51.5, showing a
single maximum in the center of the bend region.
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The condition for bound states is obtained by match
the wave functions and normal derivatives at the bounda
between regions. We match the wave functions from regi
I and II at the boundary, i.e., (x51/2, 0<y<R!. The wave
function in regionI has the form

c~x51/2,y!5c I~x51/2,y! ~y<1!50 ~R>y.1!.

~A2!

We also equate the normal derivatives at the boundary,
(]c/]x)ux51/2. Here the wave functions in the two region
are matched only over the interval 0<y<1. The matching is
carried out by expanding the wave functions in both regio
in a complete orthogonal basis which vanishes on the bou
ary; for the wave function we expand both sides in terms
sin(npy/R), and for the normal derivatives we expand bo
sides in sin(npy).

The bound states are obtained by truncating the resu
expansions and solving the matrix equation. The condit
for a bound state is Det(Z)50, whereZ[TS21, and
.M

.E
tt

. B

g

k

k

M

g
s
s

.,

s
d-
f

g
n

Tnk52
bk

an
exp~an/2!uknsinh~bk/2! ~k odd!

52
bk

an
exp~an/2!ukncosh~bk/2! ~k even!,

Snk5
unk
R

exp~2ak/2!

cosh~bn/2!
~n odd!

5
unk
R

exp~2ak/2!

sinh~bn/2!
~n even!,

unk5~21!k11
2k

p

sin~np/R!

k22n2/R2 . ~A3!

In this region the only bound states occur for wave fun
tions symmetric under reflection. The bound state wave fu
tion has a single peak in the bend region. In Fig. 10, we p
the density contours for the bound state wave function
the caseR51.5.
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