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Contribution to size effect of yield strength from the stochastics
of dislocation source lengths in finite samples
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Recent works show that the yield strength of metals increases steeply with decreasing sample size. In this work, it is shown that
this sample size effect can be rationalized almost completely by considering the stochastics of dislocation source lengths in samples of
finite size. The statistical first and second moments of the effective source length are derived as a function of sample size. The sample
strength predicted from this effective length compares well with data.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Recent works, using samples machined from nickel
and gold, have shown that critical resolved shear stress
for single crystal samples in compression increases sig-
nificantly when the diameter of the samples are below
about 10 lm [1–4]. In these cases the imposed strains
are nominally uniform, and thus this phenomenon is dif-
ferent from that in which strengthening from gradients
of imposed strain was reported [5,6]. This phenomenon
also differs from earlier findings on metal whiskers of
small diameter, which concluded that the phenomenon
was due to the absence of dislocations and high surface
quality, which prevents easy nucleation [7–9]. The
microcrystals of recent works are different in that they
have high strengths despite possessing relatively high
dislocation densities [2]. These results have challenged
the known mechanistic models of yielding in metals.

There have been several recent attempts to rationalize
these findings. Sevillano et al. [10] drew an analogy with
invasion percolation, as in fluid flow through a porous
medium, while Greer et al. [3] suggested that the effect
arises from ‘starvation’ of mobile dislocations as they
exit the finite sized sample. Deshpande et al. [11] verified
the suggestion of Greer et al., and their simulations
supported the starvation model [3,11]. Balint et al. [12]
suggested that starvation arises from the lack of internal
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nucleation events in small samples. Benzerga and Shaver
conducted simulations using constitutive rules and sug-
gested that the strengthening effect arises from internal
stresses and from the dislocation source length variation
with sample dimensions [13]. Volkert and Lilleodeen
suggested the possibility of the loss of dislocations from
the attractive effect of free surface image stresses [4].

In this work, the concept of starvation of dislocation
is examined quantitatively.

In bulk solids, where availability of dislocations is not
an issue, the critical resolved shear stress is largely deter-
mined by the stress required to initiate and maintain
dislocation multiplication in the presence of a dislocation
forest. The microplastic flow is known to initiate by
multiplication of dislocations from the weakest source,
typically a double-pinned Frank–Read source. The
dislocations thus generated glide, interacting with other
dislocations in the solid and generating further disloca-
tions by cross-slip processes. The critical resolved shear
stress (CRSS) is the stress required for the first percola-
tion of a dislocation across the sample, often bypassing
obstacles by cross-slip or by leaving loops around them
[10]. In finite samples of limited dimensions, these two
processes are affected in the following way.

First, the double-ended sources upon operation inter-
act with the free surfaces and result in truncated single
arms of dislocations, as shown schematically in Figure
1a. Analysis of the interaction of such a source with
sevier Ltd. All rights reserved.
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the cylindrical free surface is complex, but it is a good
approximation to assume that image stresses from the
free surface always tend to rotate the dislocation line un-
til it is normal to the surface [14]. Thus the stress required
to move these truncated arms depends on the shortest
distance from the pin to the free surface. This effect has
been observed recently in large-scale three-dimensional
dislocation simulations [15]. This effect is dominant when
the sample size is of the same order as the spacing
between internal obstacles (e.g. forest dislocations).
Second, the distance a dislocation moves is limited to
the width of the sample, lowering the possibility of
cross-slip multiplication. Both effects contribute to star-
vation, leaving fewer mobile dislocations than are neces-
sary to accommodate the externally imposed strain rate.

In finite samples, where the sample dimensions are of
the same order of magnitude as the source lengths, all
sources end up as being single-ended due to interaction
with the free surface, as in Figure 1b. Accordingly, the
model assumes a random distribution of pins in the sam-
ple, with each pin having a dislocation arm starting from
it and ending at the surface. For a given pin, the length
of interest is the shortest distance from the pin to the
surface. Further, for a solid with several such sources,
the arm that has the longest length determines the criti-
cal stress to initiate plastic strain. Thus the model calcu-
lates the longest of the arms each of which has a length
that is the shortest from a pin to the surface. This will
give the lower bound on the athermal CRSS in the
micro-strain regime.

Consider a cylindrical specimen of radius R, with the
primary slip plane oriented at an angle b from the tensile
axis. The glide plane in this case is an ellipse with major
axis b = R/cos(b) and minor axis R. For a random dis-
tribution of pins, the probability, p(r)dr, of finding a
pin within an elliptical annulus of infinitesimal width,
dr, at a distance r from the free surface is given by

pðrÞdr ¼ p½ðR� rÞ þ ðb� rÞ�
pRb

dr; b ¼ R= cosðbÞ ð1Þ
a b

Figure 1. (a) A schematic sketch of how double-pinned Frank–Read
sources quickly become single-ended sources in samples of finite
dimensions. (b) Schematic sketch of single-ended sources in a finite
cylindrical sample in critical configuration, which occur where the
distance from the pin to the free surface is the shortest. The longest
arm among the available sources (blue in this case) determines the
critical resolved shear stress. Thus the statistics of pins within a sample
of finite size determines the yield strength of the sample. (For
interpretation of the references in colour in this figure caption, the
reader is referred to the web version of this article.)
For the case of n pins located randomly, the probability
for the maximum distance from the free surface to be
kmax, is given by

pðkmaxÞdkmax ¼ 1� pðR� kmaxÞðb� kmaxÞ
pRb

� �n�1

� p½ðR� kmaxÞ þ ðb� kmaxÞ�
pRb

� �
ndkmax

ð2Þ
The above equation gives the probability that a given
sample with n pins has kmax as the effective source
length. The first moment of this distribution will give
the mean effective source length of multiple (statistically
sufficient number of) samples. The second moment will
give the scatter. Thus the first and second moments of
this distribution give the mean and standard deviation
of the effective source length, kmax, as

�kmax ¼
Z R

0

kmaxpðkmaxÞdkmax
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Z R

0
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Both can be reduced to analytical expressions involving
the generalized hypergeometric functions.

The stress required to operate a source with one end
pinned and the other at the free surface of a cylinder is
taken to have the same form as that for a Frank–Read
source, although the appropriate geometrical factor is
uncertain. This stress is the excess required over the fric-
tion stress and the stress from the dislocation forest
(which results in a back stress) given by the Taylor equa-
tion, since multiple iterations of the source operation
will be required for macroscopic strains of the order of
0.2%. The model neglects the effect of sample size on
the possible truncation of the Taylor potential. Thus
the critical resolved shear strength of a cylindrical sam-
ple, R, of height h, with the primary slip plane oriented
at an angle, b, to the load axis, is then given by

CRSS ¼ aGb
�kmax

þ s0 þ 0:5Gb
ffiffiffiffiffiffiffi
qtot

p ð5Þ

where a is a geometrical constant, G the shear modulus,
b the Burgers vector, s0 the friction stress and qtot the to-
tal dislocation density. The mean value of source length,
�k, is given by Eq. (3), where the number of pins, n, is
related to sample dimensions and initial dislocation
density in the sample, as given by
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Figure 2. Results for the mean and standard deviation obtained from
numerical simulations are shown compared with the analytical
equations for the case of b = 45�. The calculations are for a cylinder
with radius unity.
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Figure 3. The model predictions for (a) nickel and (b) gold are shown
in comparison with reported experimental data (from Refs. [1–4]). The
dotted lines (green and red in the web version) correspond to the lower
and upper standard deviations from the mean as predicted by the
model. The plot in (c) includes data for gold nanowires (from Ref. [18])
to show that these differ from gold micropillars, suggesting that the
nanowires are likely dislocation free with smooth surfaces that do not
favor easy nucleation as in whiskers [8]. (For interpretation of the
references in colour in this figure caption, the reader is referred to the
web version of this article.)
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n ¼ Integer qmob

pR2h
Lseg

� �
; qmob ¼

qtot

s
ð6Þ

where qtot, qmob are the total and mobile dislocation
density, h is the specimen height, Lseg the average length
of dislocation segments in the sample and s the number
of slip systems, which is 12 for face-centered cubic crys-
tals. Eq. (4) for qmob assumes that one of the slip systems
is favorably oriented and thus determines the critical
resolved shear stress. The average segment length, Lseg,
of the dislocations was taken to be R, the sample radius.
To distinguish from metal whiskers which are dislocation
free (<1010/m2), in this model for microcrystals which are
known to have a dislocation density of the order of
1012/m2, the lower bound for n is taken to be unity.

Some of the experimental data include microcrystals
which are so small (60.5 lm) as to be free of disloca-
tions, even with an average density of 1012/m2. In these
crystals, CRSS may be determined by the stress required
to nucleate a dislocation from the free surface. This will
still be different from whiskers, since the surfaces of
microcrystals are prepared differently and the microcrys-
tals are tested under compression, with one end still
fixed to a bulk sample. Thus nucleation could occur
much more easily than in whiskers. However, nucleation
of the partial 1/6h112i is more likely from energetic con-
siderations, and has been observed in atomistic simula-
tions [16]. The glide of these dislocations will be
limited by the trailing stacking fault in their wake [16].
Based on these arguments, the current model includes
a maximum bound for the critical resolved shear stress
for very small microcrystals. The stress required to
nucleate from a rough surface is beyond the scope of this
work, but, assuming that the CRSS is not nucleation
limited, the stress to move this partial dislocation is
taken to be the upper bound on CRSS. This stress will
depend on the stacking fault energy, c, and is given by

CRSSðmaxÞ ¼ ðc=bÞ ð7Þ
where b is the Burgers vector.

To confirm the logic of the derivation of Eq. (2), and
to determine the validity of the assumptions in deriving
Eqs. (3) and (4), the equations for the mean and standard
deviation of the source lengths were validated using a
numerical simulation. Random locations for the source
pins were generated using a fortran code and analyzed
for statistical variations using a simple computer algo-
rithm. Briefly, the algorithm evaluated the statistics of
placing a fixed number of pins randomly on an oblique
cylinder section using a random number generator. For
a given total number of pins, say n, the longest of the
shortest distances from the n points to the elliptical
perimeter were calculated. This was repeated for different
values of n. Using a thousand trials for each value of n,
the mean and standard deviation of the longest segment
was calculated. The results of the numerical algorithm
are shown compared with the analytical model in Figure
2 for the case of slip plane orientation b = 45�. The ana-
lytical model is found to correspond very well with the
numerical results, validating the model assumptions with
respect to the Gaussian nature of the stochastics.

Experimental data are available for the effect of spec-
imen size on the critical resolved shear stress of cylindri-
cal microcrystals of nickel and gold [1–4]. The specimens
range in size from 0.1 to 40 lm in diameter. The work
on nickel microcrystals also report measured dislocation

densities to be near 2 · 1012/m2 [2]. In most cases the cyl-
inder height was 2–3 times the sample diameter and the
primary slip plane was nearly 45� to the loading axis.
These experimental data are shown plotted along with
model predictions in Figure 3. The predicted mean in

Figure 3 was based on �kmax, while the upper and lower
bounds shown were based on ð�kmax � rkmaxÞ and ð�kmaxþ
rkmaxÞ respectively. The parameters used in the model
for the two cases are given below.

From experiments: qtot = 2 · 1012/m2; s = 12; h =
2.5(2R); s0 = 11(Ni), 13 (Au) MPa; b = 45�. Material
parameters: nickel: G = 76 GPa, b = 0.24 nm, c = 0.2 J/
m2; gold: G = 27 GPa, b = 0.288 nm, c = 0.05 J/m2.
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Note that the values for dislocation density (qtot),
crystal orientation (b) and specimen height (h) are the
same as the reported experimental values, while the
remaining parameters are well-known material parame-
ters. The friction stress, s0, is derived from the experi-
mental bulk limit of the reported data by subtracting
the contribution from the dislocation forest as given
by Eq. (5). The only fit parameter was a, and this was
taken to be unity. The effect of specimen size on the scat-
ter is predicted using the second moment of the effective
source length, as given by Eq. (4).

It can be seen from Figure 3 that a model that consid-
ers the statistical variation in the source length of dislo-
cations imposed by finite dimensions of a cylindrical
sample is sufficient to rationalize much of the effect of
sample size on the measured flow stress of microcrystals.
The predicted scatter for small samples is found to be
reasonable, while the predicted scatter for larger samples
is less than that observed. The latter could arise from
variations in the initial dislocation density in real crys-
tals. While this is satisfactory, the validity of the key
assumptions of this model remains to be examined.

First, note that the model predicts only the initial
stress for plasticity, i.e. CRSS, defined as strain resulting
from the operation of a minimum of one source in the
presence of a dislocation forest. Thus this stress includes
a back stress that accounts for the forest hardening
(assuming a size-independent Taylor relation); however,
it neglects hardening from the mobile source interacting
directly with the forest or secondary sources forming
debris and junctions. The experimental data typically
represent flow stress after 0.2% plastic strain. For a spec-
imen of diameter 1 lm (height 2.5 lm), the passage of
one dislocation through an entire slip plane amounts to
a plastic shear strain of 10�4 (=b/h), or 0.01% per cycle
of the source operation. For a strain of 0.2% the source
will have to operate 20 times. This is not unreasonable,
but in real crystals, strain hardening from direct interac-
tions could occur, raising the external stress. Thus, pre-
dictions lower than experimental values indicate the
degree of additional strain hardening in the real crystals.

Second, it is necessary to verify if the experimentally
imposed strain rates are obtainable. The critical size of
the sample is 1 lm, where the number of sources reaches
the order of unity. For an imposed strain rate of
10�3 s�1 (typical in experiments) the source will have
to operate 10 times per second. This amounts to an aver-
age velocity of the tip of the dislocation arm to be about
60 lm/s, which is reasonable. It is worth noting that, in
larger samples, variations in the strain avalanches are
seen in experiments [17]. These likely arise from the vari-
ations in how many sources operate at any given time, in
addition to how they interact with the forest.

Third, the model assumes that the stress required to
nucleate from the surface is not strength-limiting; rather,
the glide resistance of a partial dislocation determines
the upper bound. To determine the validity of this
assumption, data on ultra-high-strength nanowires of
gold were considered. Figure 3c shows that the data
on gold micropillars differs from those obtained during
bending of gold nanowires by Wu et al. [18]. It is
suggested that this arises from the fact that nanowire
flow stresses are limited by nucleation of dislocations
from surfaces free of gross imperfections being related
to the method of preparation, as has been suggested
by Nadgorny for whiskers [8]. This provides indirect evi-
dence that the micropillars are not limited by nucleation
of dislocations.

Finally, it must be pointed out that in samples with
only one source, the Schmidt factor might be lower
and will produce a higher yield stress for a given critical
resolved shear stress. For comparison with the model,
the experimental data were reduced using the Schmidt
factor of the primary slip system, due to lack of know-
ledge of the actual slip system.

In summary, it is shown that a model which considers
the statistical variation in the source length of disloca-
tions imposed by finite dimensions of a cylindrical
sample is sufficient to rationalize much of the effect of
sample size on the measured flow stress of microcrystals.
Consideration of the key assumptions in comparison
with typical experimental conditions has shown that
the assumptions are reasonable. Comparison with data
on nanowires shows that the measured flow stresses of
micropillars are not nucleation controlled. It is sug-
gested that strain avalanches observed in micropillars
are due to the stochastics of the source operation.
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