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Core structure of a screw dislocation in Ti from density
functional theory and classical potentials
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Abstract

Previous density functional theory (DFT) studies of the 1/3 h1�21 0i screw dislocation in titanium have shown metastable core struc-
tures depending on the initial position of the dislocation line. We investigate this problem by modeling a screw dislocation with two ini-
tial positions using both DFT and a modified embedded atom (MEAM) potential for Ti with flexible boundary conditions. Both DFT
and MEAM produce initial-position-dependent core structures. The MEAM potential stacking fault energies and core structures are in
good agreement with DFT. MEAM potential computes the core energies and shows the behavior of both cores under applied strain. We
found that the higher-energy core always reconstructs into the lower-energy one independent of the applied strain direction. Transfor-
mation from low- to high-energy core was not observed. Therefore, at T = 0 K, only the low-energy core is stable under applied strain.
� 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The core structure and mobility of dislocations directly
relate to mechanical properties of materials [1]. Accurate
atomic-scale dislocation core geometry is important for high
stacking fault materials such as Ti where the dislocation core
is compact and therefore difficult to investigate by experi-
ments. Classical potential studies predict both prismatic
and basal core spreading for screw dislocations in Ti depend-
ing on the origin of the initial elastic displacement field [2,3].
The prismatic core is expected for Ti where slip on the prism
planes is dominant. Recently, Tarrat et al. studied the core
geometry of the 1=3½1�21 0� screw dislocation in Ti within
the cluster approach with density functional theory (DFT)
[4] and showed that two different metastable core structures
are possible depending on the origin for the elastic displace-
ment field of the dislocation imposed before the relaxations.
One of the cores is symmetrically prismatic—with the lowest
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excess energy—while the other shows a combination of pris-
matic and pyramidal spreading. We consider this problem to
identify (a) if the existence of metastable cores is an artifact
of the boundary conditions and (b) if the cores can be easily
transformed from one to the other (e.g. cross-slip or transi-
tion states). We model the isolated dislocation using flexible
boundary conditions where the lattice Green’s function
(LGF) couples the core to the far-field harmonically
responding medium, eliminating the spurious effects of free
surfaces or insufficient computational cell size in the cluster
approach. Flexible boundary conditions have successfully
modeled dislocation cores in Mo, Al, Pd and Mg [5–8]. In
addition to DFT, we use a modified embedded atom
(MEAM) potential for Ti [9] to investigate the dependence
of core geometry metastability on the potential and to study
the behavior under stress.

Section 2 presents the computational details for flexible
boundary conditions with DFT. Comparison between
MEAM potential and DFT stacking fault energies (SFEs)
shows good agreement in Section 3. Section 4 finds that
the metastable cores are not artifacts of the boundary
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Fig. 1. Simulation cells used in DFT and MEAM calculations. Gray, blue
and black correspond to regions I, II and III, respectively. The DFT
supercell has domain boundaries at the edges of the periodic cell. The
MEAM supercell is surrounded by vacuum and is not repeated in the
plane perpendicular to the dislocation line. Both cells are periodic along
the dislocation line into the plane of view along ½1�210�.
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conditions or the potential. In addition, as the MEAM
potential reproduces the DFT geometry, we can determine
the relative energy ordering and the effect of stress. The
higher-energy core easily transforms to the lower-energy
one with applied stress. We do not observe the transforma-
tion to the higher-energy core (i.e. cross-slip) which
suggests that modeling the low-energy core is sufficient
for studies of plastic deformation.

2. Computational method

Isolated dislocations are modeled using flexible bound-
ary conditions [10,5]. Periodic boundary conditions are
applied along the dislocation line. Flexible boundary con-
ditions relax atoms surrounding the dislocation core region
with the LGF as if they are embedded in an infinite har-
monic crystalline medium. The initial condition for relaxa-
tion is the anisotropic elasticity solution for the perfect
screw dislocation displacement field applied to all atoms.
Flexible boundary conditions divide the simulation geom-
etry into three regions: core (I), transition (II) and buffer
(III). Force calculations are done with DFT or MEAM
throughout the whole geometry. The conjugate gradient
method relaxes the atoms around the core (region I); dis-
placements in region I generate forces on atoms of the
transition region (II). The LGF removes the forces on
region II by adding corrective displacements to all atoms.
The outermost region (III) acts as a buffer to protect forces
in regions I and II from the boundaries or free surfaces on
the simulation cell. Atoms in the buffer region are only dis-
placed by the corrective displacements of the LGF update
stage. Relaxation in region I (conjugate gradient) and
region II (LGF update) is iterated until the forces in
regions I and II are smaller than a chosen threshold
(20 meV/Å here).

DFT calculations are performed with VASP [11,12], a
plane-wave-based density functional code using the pro-
jected augmented wave method within the generalized gra-
dient approximation [13]. The 4s and 3d electrons in Ti are
treated as valence electrons. A planewave energy cut-off of
290 eV ensures energy convergence to 0.05 meV/atom. The
k-point mesh consists of 16 k-points along the dislocation
line and 1 k-point in each of the orthogonal directions in
the plane perpendicular to the threading direction. This
k-point mesh with Methfessel–Paxton smearing of 0.2 eV
gives an energy accuracy of 0.1 meV/atom for bulk Ti.
The screw dislocation supercell has 621 (I:41, II:196,
III:384) atoms. We modeled the same screw dislocation
in a 882 (I:162, II:286, III:434) atom supercell with MEAM
instead of DFT. We used the MEAM calculation to esti-
mate the core spreading and to determine the smallest pos-
sible size for DFT calculations (i.e. the limit on region I);
hence, the MEAM cell is bigger than the DFT cell.

Fig. 1 shows the simulation cells used in DFT and
MEAM calculations. The MEAM supercell is terminated
in vacuum. Classical potential relaxations are done using
the LAMMPS package [14]. Since we are interested in the
solution only in regions I–III, including a vacuum region
in DFT calculations is inefficient. Moreover, the electrons
can form a charge dipole at the metal surface and create
image forces in region III. In the case of screw dislocations,
a periodic simulation cell with domain boundaries at the
edges of the cell can be used instead. Using domain bound-
aries leads to smaller charge density perturbations and
smaller cell sizes [15].

3. Stacking fault energies

For Ti, a prismatic stacking fault is the lowest in energy
and has a geometry that strongly influences the dislocation
core structure and mobility. In a hexagonal close-packed
(hcp) structure, the ð10�10Þ prism planes are separated by
a/3 or 2a/3. Therefore, two types of prismatic stacking
faults are possible: the “easy” and “hard” stacking faults
which are created between a widely spaced or a closely
spaced pair of prism planes, respectively; both appear in
the dislocation core. Fig. 2 shows the generalized SFE sur-
face for an easy prismatic stacking fault in Ti from DFT
and MEAM. The generalized stacking fault surface for
the prism plane is defined by displacing a single ð10�10Þ
prismatic plane by a linear combination of [0001] and
1=3½1�210�. The faulted geometry is allowed to relax in
the ½10�10� direction. Repeating this procedure for various
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Fig. 2. Generalized stacking-fault energy surface for ð10�10Þ prism plane in Ti from: (a) DFT and (b) MEAM. Stacking fault displacements along ½1�210�
appear in the 1=3h1�210i screw dislocation core. The point corresponding to 50% slip along ½1�210� direction is a local minimum with c = 0.220 J/m2 in (a)
and a saddle point with c = 0.297 J/m2 in (b).

Table 1
Stacking fault energies from DFT and MEAM. Easy and hard prismatic
and pyramidal SFEs ceasy, chard and cpyram are evaluated at 1=6½1�210�: cI2

corresponds to the metastable intrinsic stacking fault on the basal plane
(0001) at the fault displacement vector 1=3½10�10�.
J/m2 ceasy chard cpyram cI2

DFT 0.220 1.185 0.689 0.292
MEAM 0.297 1.495 0.443 0.172
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displacement vectors gives the generalized stacking-fault
energy or the gamma surface. Our results show that
MEAM SFE values generally agree well with those
obtained from DFT. Stacking fault displacements along
½1�210� appear in the 1=3h1�21 0i screw dislocation core.
Note that 1=6½1�210� is a local minimum (c = 0.220 J/m2)
with DFT and a saddle point (c = 0.297 J/m2) with
MEAM. Table 1 compares DFT and MEAM SFEs at rep-
resentative points. Easy and hard prismatic SFE and pyra-
midal SFE are evaluated at 1=6½1�210�. DFT and MEAM
hard prismatic SFEs are five times higher than the corre-
sponding easy prismatic and pyramidal SFEs. Note that
with DFT, basal I2 SFE is higher than the easy prismatic,
while with MEAM, basal SFE is the smallest.

Fig. 3a shows the projection of the ð10�11Þ pyramidal
gamma surface computed by MEAM. The fault displace-
ment vector ~t ¼ 1=2½�10 12� þ 1=6½1�210� ¼ 1=3½�1�12 3� cor-
responds to a lattice vector and consequently gives a zero
SFE (white square in Fig. 3a). To compare with DFT,
we computed the pyramidal SFE along the ½1�210� path
shown by a white arrow in Fig. 3a. Fig. 3b shows that
MEAM pyramidal SFEs are lower than the DFT values.

4. Dislocation core structures

Figs. 4 and 5 show the core structure of the 1=3½1�21 0�
screw dislocation in Ti obtained from DFT and MEAM
at two initial positions for the origin of the elastic solution
for a perfect screw dislocation. The red1 squares indicate
1 For interpretation of color in Figs. 1–6, the reader is referred to the
web version of this article.
the initial centers; while the long-range solution is the same,
there can be variations in the relaxed core geometry. Tarrat
et al. considered five initial positions and reported the
geometry of two different core structures [4]. They com-
pared the DFT core structures to the results from a
EAM potential. In one case, both EAM and DFT gave a
symmetric prismatic core. The other initial position caused
the EAM core to spread on the basal plane while DFT
showed a combination of prismatic and pyramidal spread-
ing [4]. What Tarrat et al. called position 3 (a symmetric
prismatic core), we refer to as “mirrored”, and we refer
to their position 5 as “unmirrored” in reference to the mir-
ror plane in (0001).

Figs. 4 and 5 show the core structure of our mirrored
and unmirrored cores analyzed with full and partial differ-
ential displacement (DD) maps [16] and Nye tensor density
[17]. Figs. 4a and b and 5a and b show the full DD maps of
the cores. Each circle is a row of atoms along the disloca-
tion threading direction (i.e. out of the plane), where an
arrow between two rows of atoms corresponds to the rela-
tive displacement between the rows compared with the per-
fect crystal. The length of the arrow scales as the
magnitude of the relative displacement between atom rows.
A closed triad of arrows shows a Burger’s vector displace-
ment. Our results confirm the existence of metastable core
structures depending on the initial position of the disloca-
tion line. In addition, MEAM and DFT core geometries
agree very well in each case. Furthermore, we study the
structure of the partial dislocations for both cores. Figs.
4 and 5c–h show the Nye tensor distribution superimposed
on the DD maps of the dissociated partials for mirrored
and unmirrored cores, respectively. Color contours in Figs.
4 and 5 show the linear interpolation of the Nye tensor
density following the method of Hartley and Mishin [17].
The Nye tensor’s screw component and edge components
on basal and prism planes are plotted in each case. Partial
dislocations are identified by local extrema in the Nye ten-
sor distribution or a closed triad of atoms in DD maps. In
these maps closed triads represent a half Burger’s vector to
identify the partials. The mirrored core dissociates into two
screw character partials separated by less than 2c on the
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Fig. 3. Projection of the ð10�11Þ pyramidal plane generalized SFE for MEAM (a) and its cross-section along the 1=3½1�210� direction for MEAM and DFT
(b). The white square is located at 1=2½�1012� þ 1=6½1�210�, which corresponds to a zero SFE value. (b) Shows the MEAM and DFT values of the SFE in
the pyramidal plane along the white arrow.
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Fig. 4. Mirrored core structure of the dissociated 1=3½1�210� screw
dislocation (the lower-energy core between two metastable configura-
tions). The red square shows the origin of the elastic solution for the
perfect dislocation. Contour plots of the screw and edge components of
the Nye tensor are plotted. DD maps of the dissociated dislocations are
superimposed. Partial dislocations are identified by local extrema in the
Nye tensor distribution or a closed triad of atoms in DD maps. The core
spreading onto the prism planes is similar between DFT and MEAM.
Note the change of scale by an order of magnitude from the screw
component to the edge component plots.
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Fig. 5. Unmirrored core structure of the dissociated 1=3½1�210� screw
dislocation (the higher-energy core between two metastable configura-
tions). The red square shows the origin of the elastic solution for the
perfect dislocation. Contour plots of the screw and edge components of
the Nye tensor are plotted. DD maps of the dissociated dislocations are
superimposed. Partial dislocations are identified by local extrema in the
Nye tensor distribution or a closed triad of atoms in DD maps. Both DFT
and MEAM show similar non-planar core spreading, almost along the
pyramidal plane. Note the change of scale by an order of magnitude from
the screw component to the edge component plots.
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Fig. 6. Screw dislocation MEAM cores under strain on the prism plane.
(a) and (c) Show mirrored and unmirrored cores under zero applied strain,
respectively. The mirrored core moves under �prism = 0.005 (b), while the
unmirrored core reconstructs into the mirrored one and moves at
�prism = 0.007 (d). The unmirrored core transforms into the mirrored core
under �pyramidal = 0.012 and �basal = 0.015 as well (not shown).
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prismatic plane. Both MEAM and DFT give the same
compact core with symmetrical prismatic spreading.
Unmirrored core partials have both screw and edge charac-
ter and form a non-planar core structure.

We compute the excess energy between the two cores by
subtracting the energies of region I atoms in each core
using MEAM. We find that the unmirrored core is about
12 meV/b higher in energy where b is the magnitude of
the dislocation’s Burger’s vector. Note that the initial posi-
tion of the mirrored core is located between a widely
spaced pair of prism planes and exactly on a basal plane.
In this case, dislocation displacements tend to create an
easy prismatic stacking fault in the core without a possibil-
ity of displacing basal planes. The low value of ceasy allows
these displacements and creates a symmetric prismatic
core. On the other hand, the initial position of the unmir-
rored core is located between closely spaced prismatic
planes and halfway between two basal planes. Here, the
dislocation displacement field induces a hard prismatic
stacking fault which requires a very high energy according
to Table 1. Therefore, a combination of a basal followed by
an easy prismatic fault creates the non-planar core.

We investigate the behavior of screw cores under applied
strain and find that the mirrored core is stable. Since the
prismatic plane is the dominant slip plane for the glide of
the screw dislocation, we compute the strain required to
move the dislocation by applying strain on the prism
planes. In order to find the minimum stress, the dislocation
core geometry should be relaxed under several incremen-
tally increasing strain values. These are computationally
expensive calculations derived from DFT. On the other
hand, the MEAM potential predicts the SFEs and disloca-
tion core geometries very well while being computationally
cheap and thus is used to perform strain calculations. Fig. 6
shows the mirrored and unmirrored cores under applied
strain on the prism planes. We found that the mirrored
core starts to move under �prism = 0.005 prismatic strain.
The higher-energy unmirrored core reconstructs into the
lower-energy mirrored core and begins to move on the pris-
matic plane at �prism = 0.007. Since the unmirrored core is
non-planar, we also put the cores under strain �pyramidal

on the pyramidal plane for testing purposes. The mirrored
core begins to slip on the prism plane under �pyramidal =
0.005 pyramidal strain. At �pyramidal = 0.012 the unmir-
rored core transforms into the mirrored one again and
starts to slip on the prism plane. For completeness, we
applied basal strains �basal to the cores as well. The mir-
rored core starts to move along prismatic planes at
�basal = 0.012 and the unmirrored core again transforms
into the mirrored one under �basal = 0.015 and moves on
prismatic planes. This suggests that the mirrored core is
the ground state and is the dominant core configuration,
even under stress. The unmirrored core is not expected to
impact the mechanical behavior of Ti; it appears to be a
metastable artifact of relaxing the dislocation from the ini-
tial displacements of anisotropic elasticity theory for a per-
fect dislocation.
5. Conclusions

We investigated the existence of metastable core struc-
tures for a 1=3½1�210� screw dislocation in Ti using DFT
and MEAM potential in a framework with flexible bound-
ary conditions. Both cores have been reproduced (in Ref.
[4] and in this work) using different potentials and bound-
ary conditions. In addition, we studied the behavior of the
two cores under applied strain at T = 0 K and found that
the higher-energy core (unmirrored) always reconstructs
into the lower-energy one (mirrored) independent of the
applied stain direction. We did not observe the transforma-
tion from low- to high-energy core, which rules out the pos-
sibility of transition states existing. Both dislocations
continued to slip on the prism plane under sufficient strain.
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This is a good extension of the results obtained in Ref. [4]
and would leave open the question as to the possibility of
transformation from mirrored to unmirrored core under
the combination of an appropriate stress field and high
temperature. We also showed that the MEAM potential
agrees well with DFT in computing SFEs and dislocation
core structures. Note that although the MEAM basal
SFE is lower than the prismatic value, the dislocation core
structures still agree closely with DFT. The agreement of
MEAM and DFT is an important result suggesting that
the MEAM potential is a reliable approximation for
DFT in modeling dislocations in Ti and can be used in cal-
culations that require large numbers of atoms beyond the
scope of DFT.
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