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Nanoscale hydride formation at dislocations in palladium: Ab initio theory and inelastic neutron
scattering measurements
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Hydrogen arranges at dislocations in palladium to form nanoscale hydrides, changing the vibrational spectra.
An ab initio hydrogen potential energy model versus Pd neighbor distances allows us to predict the vibrational
excitations for H from absolute zero up to room temperature adjacent to a partial dislocation and with strain.
Using the equilibrium distribution of hydrogen with temperature, we predict excitation spectra to explain new
incoherent inelastic neutron-scattering measurements. At 0 K, dislocation cores trap H to form nanometer-sized
hydrides, while increased temperature dissolves the hydrides and disperses H throughout bulk Pd.
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I. INTRODUCTION

The increasing needs for renewable energy—and issues of
production, storage, and transportation of energy—motivates
interest in hydrogen for energy storage.1 At a fundamental
level, open questions remain about how hydrogen acts in met-
als, despite a long legacy of study.2,3 Palladium is an ideal metal
to study hydrogen behavior due to the strong catalytic behavior
of the Pd surface facilitating hydrogen adsorption, favorable
T -pH2 thermodynamic properties, and that hydrogen acts as
an ideal lattice gas in Pd.4 Neutron-scattering characterization
is useful,4 due in part to a scattering interaction mediated
by neutron-nuclear properties and available incident neutron
energies similar to those associated with lattice vibrations.
Coherent inelastic neutron scattering gave the first phonon
dispersion measurement of a metal hydride (Pd-H and -D).5

The hydrogen-dislocation trapping interaction in Pd has
remained of significant interest over the last four decades3,6

because of the favorable Pd-H properties mentioned above
and because Pd can be heavily deformed by hydride cycling
across the miscibility gap.7

Mobile solutes—substitutional and interstitial—arrange
themselves in a crystal to minimize the free energy; with
nonuniform strains, the arrangement reflects the energy
changes from strain. For an edge dislocation, compressive
and tensile strains produce areas that are depleted and en-
hanced with solute concentration—a “Cottrell atmosphere.”8

Cottrell atmospheres produce time-dependent strengthening
mechanisms such as strain aging in steels and the Portevin–Le
Chatelier effect in aluminum alloys,9 and the rearrangement
of hydrogen from dislocation strain fields affects dislocation
interactions.10 The dislocation core—where the continuum
description of the strain fields breaks down—provides the
largest distortions in geometry and the attraction of solutes
to this region is crucial for solute effects on strength.11–13

Tensile strain also lowers the vibrational excitation for H, and,
in a dislocation core, broken symmetry splits the excitations.14

The vibration of Pd next to H changes the local potential
energy for each H atom, broadening the vibrational excitations.
Additionally, the vibrational excitations of the light hydrogen
atom are significantly changed by anharmonicity.15,16 We treat
all of these effects: nonuniform hydrogen site occupancy

due to strain and H-H interaction, quantum-thermal vibra-
tional displacements for neighboring Pd, and the anharmonic
potential energy to determine the causes of changes to the
vibrational spectra with temperature. Experimentally, in situ
inelastic neutron scattering averages over different H sites to
give a direct measurement of H environment. We compare our
ab initio treatment of hydrogen sites and anharmonic vibra-
tional excitations with incoherent inelastic neutron-scattering
measurements to observe the formation and dissolution of
nanoscale hydrides around dislocation cores in palladium.

II. METHODS

Incoherent inelastic neutron scattering (IINS) using the
Filter Analyzer Neutron Spectrometer (FANS) at the NIST
Center for Neutron Research17 measures the vibrational
density of states of trapped hydrogen in polycrystalline
Pd as a function of temperature. FANS scans the incident
neutron energy and records the intensity that passes through
a Be-Bi-graphite composite neutron filter. Sample preparation
procedures and material are identical to those in Heuser et al.,18

with ∼100 grams of polycrystalline Pd sheet measured at
4, 100, 200, and 300 K. Palladium sheet supplied by Alpha
Aesar was cold rolled in the as-received condition and further
deformed by cycling twice across the hydride miscibility gap.7

It was held under vacuum at room temperature for several days
and then annealed for 8 hours at ∼400 K to completely outgas
the sample. The subsequent measured pressure reduction in a
closed volume at room temperature using a portable hydrogen
gas loading apparatus gives a total hydrogen concentration of
0.0013 [H]/[Pd], corresponding to a total hydrogen inventory
of 1.3 mg. The IINS measurements were performed in an Al
measurement can sealed with indium wire.18 This can was
isolated with an all metal vacuum valve, mounted to the FANS
instrument, and cooled to 4 K. Subsequent measurements
were performed at 100, 200, and 300 K. The sample was
then outgassed at ∼420 K for ∼48 hours to completely
remove all hydrogen. The zero-concentration background was
measured from the outgassed sample in the Al can at 4, 100,
200, and 300 K. We also recorded fast neutron background
with the sample in place and the detector bank blocked with
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Cd.18 The measured hydrogen vibrational density of states in
Fig. 3 is the normalized net intensity after zero-concentration
and fast neutron background subtractions. In addition,
an energy-independent flat background attributed to multi-
phonon scattering was subtracted, as discussed in Ref. 18.

Density functional theory calculations for Pd-H14 are
performed with VASP19,20 using a plane-wave basis with the
projector augmented wave (PAW) method21 with potentials
generated by Kresse.22 The local-density approximation as
parametrized by Perdew and Zunger23 and a plane-wave
kinetic-energy cutoff of 250 eV ensures accurate treatment
of the potentials. The PAW potential for Pd treats the s and d

states as valence, and the H s state as valence. The restoring
forces for H in Pd change by only 5% compared with a
generalized gradient approximation, or including Pd 4p states
in the valence; our choice of the local-density approximation
is computationally efficient and gives an α-Pd lattice constant
of 3.8528 Å compared with the experimentally measured
3.8718 Å. To compute the dynamical matrix for Pd, and to
relax H at the octahedral site in α-Pd, we use a 4 × 4 × 4
simple-cubic supercell of 256 atoms, with a 6 × 6 × 6 k-point
mesh, while the dislocation geometry with 382 atoms uses
a 1 × 1 × 8 k-point mesh. For the PdH0.63 hydride force-
constant calculation, we use a 3 × 3 × 3 simple cubic cell
(108 Pd atoms, 68 H atoms) with displacements of 0.01 Å for
H and Pd atoms and a 8 × 8 × 8 k-point mesh. The electron
states are occupied using a Methfessel-Paxton smearing of
0.25 eV. For the H octahedral site in α-Pd and the partial
dislocation core, atom positions are relaxed using a conjugate
gradient until the forces are less than 5 meV/Å.

Dislocations produce a distribution of interstitial site
strains; to compute the density of strain sites available for
hydrogen, we consider a simplified model for the distribution
of dislocations throughout the crystal. We take the dislocation
density ρdisl as given by cylinders of radius R = 1/

√
πρdisl

with an edge dislocation at the center; we assume that the strain
in each cylinder is due only to the single edge dislocation at
the center. The volumetric strain r away from the dislocation
core and with angle θ to the slip plane is

ε = − b

2πr

1 − 2ν

1 − ν
sin θ = − sin θ × b

4πr
(1)

for a Poisson’s ratio ν = 1/3, and where b = 0.298 nm is the
Pd Burgers vector. This equation becomes invalid for small r;
we truncate the expression in the “core” of the dislocation. We
can estimate the size of the core by considering the maximum
strain of ±5% at the partial core from Ref. 14; then,

rc = b

4π (0.05)
= 1.59b ≈ 4

√
6b. (2)

The line vector of an edge dislocation is t = √
6a0/2 with

Burgers vector b = a0/
√

2, and so the core has a volume of
r2
c t = 3a3

0/2 = 6(a3
0/4); hence, there are 6 sites per dislocation

line inside this radius. We assign half the maximum strain of
+5% and half the minimum strain of −5% corresponding
to opposite sides of the partial cores. Previous ab initio
calculations of the core give a trapping energy of 0.164 eV
with a 5% strain;14 the trapping energy matches the decrease
in hydrogen energy from a 5% increase in volume—we then

model the binding energy for H as linear in the site strain ε:
−0.164eV (ε/0.05).

With these definitions, we compute the density of strain
sites n(ε) by integrating over our cylinder cross section from
rc out to R. We consider the 6 core sites (3 attractive and 3
repulsive) separately from this continuum calculation.

n(ε) =
[∫ R

0
d2r

]−1 ∫ R

rc

d2rδ(ε − ε(r,θ ))

= ρdisl

∫ R

rc

rdr

∫ 2π

0
dθδ

(
ε + b

4πr
sin θ

)
= 2ρdisl

∫ min{R,b/4πε}

rc

rdr

∣∣∣∣ b

4πr
cos

(
sin−1

(
ε4πr

b

))∣∣∣∣−1

= 2ρdisl

∫ min{R,b/4πε}

rc

dr
r((

b
4πr

)2 − ε2
)1/2 , (3)

where the delta-function integral is calculated by rewriting the
delta function in terms of the two roots θ0 = sin−1(ε4πr/b). To
simplify the expression, we define two strains: the maximum
site strain ε1 = b/(4πrc), and the maximum strain at the
cylinder edge ε0 = b/(4πR). Then,

n(ε) = 2ρdisl

∫ min{R,b/4πε}

rc

dr
r((

b
4πr

)2 − ε2
)1/2

= 2ρdisl

(
b

4π

)2 ∫ ε1

max{ε0,ε}
dxx−3(x2 − ε2)−1/2

= 2ε2
0

π

∫ ε1

max{ε0,ε}
dxx−3(x2 − ε2)−1/2. (4)

For |ε| > ε0, this gives

n(ε) = 1

π

⎧⎨⎩
(

ε0

ε1

)2

√
ε2

1 − ε2

ε2
+ ε2

0

ε3
arccos

(
ε

ε1

)⎫⎬⎭ , (5)

and for |ε| < ε0, this gives

n(ε) = 1

π

⎧⎨⎩
(

ε0

ε1

)2

√
ε2

1 − ε2

ε2
−

√
ε2

0 − ε2

ε2

+ ε2
0

ε3

[
arcsin

(
ε

ε0

)
− arcsin

(
ε

ε1

)]}
. (6)

These two expressions can be written in terms of the ratio
η = ε0/ε1 < 1 as

n(ε) =

⎧⎪⎪⎨⎪⎪⎩
1

πε3

(
εη2

√
ε2

1 − ε2 + ε2
0 arccos (ε/ε1)

)
, |ε| > ε0,

1
πε3

(
εη2

√
ε2

1 − ε2 − ε

√
ε2

0 − ε2

+ ε2
0[arcsin(ε/ε0) − arcsin(ε/ε1)]

)
, |ε| < ε0.

(7)

The general scaling n ∼ |ε|−3, similar to that of Kirchheim.24

If we integrate this density of states over all strains, we have∫ ε1

−ε1

dεn(ε) = 1 − η2, (8)
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which accounts for the “missing” core states, which are a
fraction η2 = r2

c /R2 of all possible sites. We add back the core
sites that make up 6r2

c ρdisl of all possible sites; half have tensile
strain +ε1, and the other half have compressive strain −ε1. In
our sample, the dislocation density is ρdisl = 1011cm−2, so R =
1/

√
πρdisl = 63.7b = 19 nm, the maximum site strain is ε1 =

b/(4πrc) = 0.05, and the maximum strain at the cylinder edge
is ε0 = b/(4πR) = 1.25 × 10−3, with a ratio of η = ε0/ε1 =
0.025, and with a core occupancy of 6r2

c ρdisl = 2 × 0.576 ×
10−3.

The thermodynamics of hydrogen in Pd requires consider-
ing not just the site strain from a dislocation, but also from
neighboring hydrogen atoms. The site adjacent to a hydrogen
interstitial in Pd experiences strain due to the occupancy of the
hydrogen site; this strain, in turn, affects the site energy. In a
256-atom Pd supercell calculation of a hydrogen interstitial,
the relaxation neighboring the hydrogen interstitial site is
expanded by 
ε = 6.864 × 10−3; this produces a lowered site
energy of approximately 
E = −23 meV. It should be noted
that this is purely a classical approximation—it ignores not
only electronic structure effects, but zero-point displacement
of the two hydrogen atoms. However, it should give the
correct order of magnitude for the strength of interaction,
and it suggests a propensity for ordering on the hydrogen
sublattice.

To account for the weak H-H binding on the hydrogen
distribution and site occupancy, we consider a simple self-
consistent mean-field model. A site with energy E (or,
alternately, strain ε) will be shifted by 
E if any of its
neighbors are occupied, and unshifted if all are unoccupied. We
will ignore spatial variations in the local site occupancy, and
so approximate the probability of each neighboring site being
occupied with the site occupancy f̃ . As there are twelve possi-
ble nearest-neighbor sites in the FCC hydrogen sublattice, the
fraction of sites where all twelve neighbors are unoccupied is
(1 − f̃ )N with N = 12; hence, each site now has two possible
energy levels: a fraction (1 − f̃ )N with energy E and a fraction
1 − (1 − f̃ )N with energy E + 
E. To be in equilibrium,
these sites have occupancies of f0 = [exp (β(μ − E)) + 1]−1

and f1 = [exp (β(μ − E − 
E)) + 1]−1, respectively. Thus,
the occupancy of a site satisfies the self-consistent equation

f̃ = f1 + (1 − f̃ )N (f0 − f1). (9)

This equation is solved for f̃ at each site given its energy
E and the chemical potential μ; the occupancy is integrated
over the density of sites to determine the total concentration
of hydrogen. Equation (9) can be solved approximately (to
10−4) by making a quadratic approximation around f̃ ≈ f1 to
f̃ = g(f̃ ). Defining the function and its first two derivatives
at f1,

g(0) = f1 + (1 − f1)N (f0 − f1),

g(1) = −N (1 − f1)N−1(f0 − f1), (10)

g(2) = N (N − 1)(1 − f1)N−2(f0 − f1),

the quadratic approximate self-consistent solution is

f̃ = 2
[
g(0) − g(1)f1 + 1

2g(2)f 2
1

]{(1 − g(1) + g(2)f1)

+ [(1 − g(1))2 + 2g(2)(f1 − g(0))]1/2}−1. (11)

This self-consistent mean-field model accounts for the
hydrogen-hydrogen attraction, and the primary effect is at low
(but above zero) temperature where the ordering competes with
entropy; it produces somewhat higher hydrogen occupancies
than would be expected without any H-H interaction. This
approximate thermodynamic model is not accurate when the
hydrogen occupancy becomes large; for example, it does not
account for the formation of PdH0.63 before the formation of
PdH.

Figure 1 shows the formation of the Cottrell atmosphere
at low temperatures and dissolution near room temperature,
including the difference between integrated occupancies as-
suming 
E = 0 and 
E = 23 meV. Qualitatively, assuming

E = 0 shows similar behavior to 
E = 23 meV, with
dissolution of the nanoscale hydride between 200 and 300 K.
The primary effect of the H-H binding is to maintain a
slightly higher hydrogen concentration in the dislocation cores.
Figure 1 shows the integration of site occupancy, starting from
the core; the derivative with strain gives the fraction of H at
a specific strain. At 0 and 100 K the core is fully occupied;
hence, the integrated occupancy starts at 0.576 × 10−3. At
200 K the core is 96% occupied, falling to 54% occupancy
at 300 K. As temperature rises, lower strain sites have an
increased occupancy due to entropy, and sites near the core are
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FIG. 1. (Color online) Integrated occupancy of hydrogen around
dislocations in Pd with temperature for 
E = 23 meV (solid) and

E = 0 (dashed). The integrated occupied density of sites goes
from the most favored sites (dislocation cores) through the range
of volumetric strain around the dislocation core; all hydrogen solutes
are accounted for at the saturation concentration of xH = 1.3 × 10−3.
The occupancy follows a Fermi function for 
E = 0, and the effect
of H-H coupling is to maintain the nanoscale hydride to slightly
higher temperatures. At 0 K, the Cottrell atmosphere has a sharp
boundary at r = 4b = 7.9 Å. At 100 K, the atmosphere shows only
small spreading away from the core, while at 200 K there is an
increasing occupancy for H at 0 strain. At 300 K, the atmosphere is
dissolving, with decreased occupancy in the core as well as around
the dislocation.
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less populated—the “dissolution” of the Cottrell atmosphere,
although the core still has hydrogen. The fractional occupancy
of sites near zero strain decays exponentially, but as the number
of sites is growing as |ε|−3 most of the hydrogen is well
dispersed at higher temperatures.

Prediction of vibrational excitations for hydrogen requires
sampling of different Pd displacements neighboring the
H atom to determine the potential energy. Hydrogen is
surrounded by 6 Pd neighbors at a

2 〈100〉. These six neighbors
are displaced according to the thermal occupation of phonons,
including the quantum-mechanical zero-point motion. The
displacements provide an important broadening of the hy-
drogen vibrational excitation spectra, as the light hydrogen
atom evolves in a Born-Oppenheimer-like manner (valid as
MH ≈ 10−2MPd), sampling the local potential energy from the
neighboring Pd. To compute a density of excitation energies
for the H atom, we need to sample the possible displacements
for neighboring atoms at a temperature T . For the highest
frequency excitation of Pd, 8 THz (h̄ω = 33meV), x0/

√
2 =

0.025 Å; at 300 K, x̄ = 0.033 Å. The Gaussian distribution
of displacements for a harmonic oscillator (see Appendix)
provides the basis for random sampling displacements for Pd
atoms from independent Gaussians of width x̄(ωn(�q),T ) for
each phonon mode ωn(�q) in the Brillouin zone. Let D( �R) be
the 3 × 3 force-constant matrix between an atom at 0 and �R;
moreover, let �u( �R) be the displacement vector for an atom at
�R. Then, the Fourier transforms of D and �u are

D̃(�q) =
∑

�R
D( �R)ei �q· �R, ũ(�q) = 1√

N

∑
�R

�u( �R)ei �q· �R (12)

for a bulk system of N atoms. The inverse Fourier transforms
are

D( �R) = 1

N

∑
�q

D̃(�q)e−i �q· �R, �u( �R) = 1√
N

∑
�R

ũ(�q)e−i �q· �R,

(13)

where we have used the fact that there are also N q points in
the Brillouin zone summation. Note also that∑

�R
|�u( �R)|2 =

∑
�q

|̃u(�q)|2 . (14)

Then, the displacements ũ(�q) can be written as the sum
of three Gaussian distributed random variables αn(�q) with
random phases θn(�q), multiplied by the corresponding width
x̄(ωn(�q),T ) and normalized eigenvector of D̃(�q), �un(�q). In
reciprocal space, the sampled displacement ũ(�q) is

ũ(�q) =
3∑

n=1

αn(�q)�un(�q)

[
h̄

2mωn(�q)
coth (h̄ωn(�q)/2kBT )

]1/2

.

(15)

The final step is to inverse Fourier transform all of the
displacements, and to remove the center-of-mass shift for the
the six neighbors surrounding the H atom at {�r}. In the sum

over the discrete �q in the Brillouin zone, the weight of each
point w(�q) = 1/N , so


u(�r) =
∑
n�q

|αn(�q)|�un(�q)

[
w(�q)h̄

2mωn(�q)
coth (h̄ωn(�q)/2kBT )

]1/2

×
{

cos(�q · �r + θn(�q)) − 1

6

∑
�r ′

cos(�q · �r ′ + θn(�q))

}
.

(16)

This requires 3N − 3 random Gaussian variables αn(�q) to pro-
duce one sample of displacements for Pd atoms neighboring
the hydrogen atom at a temperature T .

The force constants for Pd come from ab initio via a direct-
force technique25 with a 4 × 4 × 4 simple-cubic supercell;
this reproduces the elastic constants and phonons within 5%.
We use a discrete 16 × 16 × 16 Monkhort-Pack mesh26 of q

points for the Brillouin zone. With 40 000 displacements for
each temperature (0 to 300 K) in the dislocation core and
strains from +0.05 to –0.01 in 0.01 increments, we compute
vibrational excitations for H in Pd. Given the H potential
energy, we solve the Schrödinger equation numerically. For
each Pd displaced environment, we find the minimum energy
position for H, expand the potential as a fourth-order polyno-
mial in H displacement, and compute the three lowest-lying
excitations using a Hermite-polynomial basis.14 This gives
120 000 excitation energies, binned into 1 meV bins. Thus, we
predict vibrational density of states for H in a dislocation core,
and at strains from +0.05 to –0.01 at 0, 100, 200, and 300 K.

To efficiently describe the energy landscape for a hydro-
gen atom in a variety of interstitial sites—including small
displacements of Pd due to quantum-thermal vibrations—we
optimize an embedded-atom method-like potential for H based
on its distance to six neighboring sites. The embedded-atom
method27–30 can work well for describing the energy of atoms
in metallic systems: Neighboring atoms have overlapping
charge densities at a site, and atoms experience an “embedding
energy” due to that local environment. As we are interested in
describing H accurately for a small range of environments, we
define a potential based on similar ideas, but make the fitting
parameters as linear as possible so that overfitting can be easily
identified, and good transferability achieved. From previous
calculations,14 we have a large amount of force-displacement
data for H in different environments (58 displacements in the
dislocation core, 40 displacements in unstrained Pd, and 32
displacements in +5% strained Pd). This fitting database gives
sufficient coverage that our potential will be used to interpolate
rather than extrapolate. The general form of the total energy
in terms of the H-Pd distances rm is

EH({rm}) =
D∑

d=2

Udρ
d +

∑
m

[
C∑

c=1

φcr
c
m

]
,

(17)
where ρ =

∑
m

e−arm,

where D and C determine the polynomial order of the
embedding energy U (ρ) and the pair potential φ(r); besides
the coefficients Ud and φc, there is the parameter a which
determines decay length of the density. This means that the
energies (and forces) are linear in all parameters except a; we
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can easily optimize the parameters by solving for Ud and φc for
a given a with the smallest mean-squared error in the forces
(weighted by the force magnitude). Hence, for any choice
of D and C, we can find optimal parameters to accurately
reproduce the DFT forces. To optimize the choice of D and C,
we computed the leave-one-out cross-validation score (CVS)
for each optimal set of parameters; D = 2 and C = 5 had the
lowest CVS. This fit (EH in eV, rm in Å),

EH({rm}) = 4025.39
( ∑

m

e−3.4715rm

)2
+

∑
m

{ − 131.94rm

+ 119.41r2
m − 54.073r3

m + 12.1883r4
m

− 1.09167r5
m

}
, (18)

had no error larger than 10% in any of the forces, and repro-
duced the H excitation spectra of the direct DFT calculation to
within 2 meV. As r � 2Å, the contribution of the higher order
polynomial coefficients is decreasing to larger orders.

III. RESULTS

Figure 2 shows the predicted vibrational density of states
for hydrogen at equilibrium zero strain, at a 5% expanded site,
and in the partial core. Increasing temperature broadens the
excitation spectra with increased vibration of neighboring Pd
atoms. There is no shift in the peak position with temperature

50 60 70 80 90 100 110 120
hν [meV]

0

8×10−2

8×10−2

  D
O

S
[m

eV
−1

]

0K
100K
200K
300K

5×10−2

core

+5% strain

0% strain

FIG. 2. (Color online) Calculated vibrational density of states for
hydrogen in Pd with temperature. Increasing temperature produces
larger displacements of Pd beyond the zero-point motion at 0 K; this
increases the spread in the vibrational excitations. The central peaks
for the three sites are temperature independent. Peak broadening
smears the low and high excitations in the dislocation core at room
temperature.

due to Pd vibration, but only from strains. The dislocation
core environment breaks cubic symmetry, giving three peaks
below 120 meV.14 Temperature widens the peaks above and
below 78 meV on each side of the central peak at room
temperature. Hence, despite dislocation core occupancy at
room temperature, it is difficult to experimentally identify H
in the dislocation core except at low temperatures.

Figure 3 shows the predicted vibrational spectra for 0.13 at.
% H in Pd as a function of temperature, and the comparison
with inelastic neutron scattering measurements. Combining
the site-occupancy data from Fig. 1 with the predicted
vibrational spectra in Fig. 2, we predict the expected measured
vibrational spectra with temperature. To compare with the
experimental measurements, we scale all of our peak heights
to be equal, scale intensity by 1/

√
hν to produce a scattering

cross section under the condition of variable incident energy
and fixed final energy (as is the case for the measured
IINS spectra reported here), and scale energy by 7/8. The
latter scaling corresponds to a needed softening of the DFT
calculations of vibrational spectra for H in Pd compared with
experimental measurements; the overestimation of vibrational
excitation is independent of exchange-correlation potential and
treatment of H and Pd ionic cores14 and is consistent with
earlier fully anharmonic calculations of isolated hydrogen
in Pd.15 The experimentally measured line shape is in
good agreement with the prediction of scattering at room
temperature, but the shapes begin to deviate as temperature is
lowered.

Lowering temperature forms a Cottrell atmosphere and the
predicted scattering cross section shifts and narrows; the shift
in peak energy agrees with the experimental measurements, but
the peak narrowing does not. At 300 K, hydrogen is primarily
in low strain environments and has a peak widened primarily by
vibration of Pd neighbors. As temperature is lowered, ab initio
calculations predict a shift of the peak to lower frequencies as
higher strain sites and the dislocation core are preferentially
occupied; this matches the experimental measurement as well.
However, the ab initio calculations predict a narrowing of
spectra; this narrowing is due to the smaller displacements of
Pd neighbors producing less random distortion of the potential
energy. As the Cottrell atmosphere forms, the local hydrogen
concentration near the dislocation core is very high, forming
hydride phases in nanoscale cylinders. This corresponds well
with recent small-angle neutron scattering measurements at
low temperatures and hydrogen concentrations in deformed
single-crystal Pd.31 The vibrational spectrum of β-PdH is
wider due to H-H interactions;18 this dispersion is lacking in
the ab initio calculations due to the difficulty of predicting
fully anharmonic dispersion relations. We have computed
the harmonic bulk PdH0.63 vibrational density of states that
includes dispersion, but lacks anharmonicity; the comparison
with the IINS signal from 0 to 200 K strongly backs up the
presence of hydride. Fitting the experimental intensity to a
linear combination of the two predicted intensities suggests
all hydrogen is in hydride and none is free at 0 K, a 9:1 ratio
at 100 K, a 9:4 ratio at 200 K, and dissolution of the hydride
at 300 K. Hence, we conclude that the Cottrell atmosphere is
forming of nanoscale hydride particles near dislocation cores,
despite the low total hydrogen concentration in the sample, to
explain the changes in vibrational spectra.
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FIG. 3. (Color online) The predicted vibrational density of states
and inelastic neutron scattering intensity for 0.13 at. % H in Pd
as a function of temperature. The temperature determines both the
occupancy of states for H (see Fig. 1) and the vibrational spectra
for all states (see Fig. 2); taken together, we predict the density of
states in the top figure. To compare with IINS measurements, we
scale intensity by 1/

√
hν, equalize amplitudes, and scale energy by

7/8 (DFT/experimental discrepancy). The agreement in line shape at
300 K confirms that the main cause of peak broadening is Pd vibration.
At lower temperatures, the formation of a Cottrell atmosphere creates
nanoscale regions with high hydrogen concentration. The scattering
signal from β-PdH has a width similar to the experimentally measured
spectrum at 0 K (Ref. 18); the difference from the ab initio prediction
is due to the dispersion of a hydride which is missing in our
calculation of isolated hydrogen vibrations. The computed PdH0.63

spectra (dashed lines) has dispersion but is a harmonic approximation
for hydrogen. The signal change can estimate the fraction of nanoscale
hydrides at dislocation cores.

IV. CONCLUSION

Combining the experimental measurement of hydrogen
vibrational spectra with ab initio calculations of vibrational

spectra with temperature, we can identify the formation of a
Cottrell atmosphere leading to nanoscale hydride precipitates
at dislocation cores. By separating the sources of spectral
broadening—dispersion in hydrides at low temperatures,
and thermal broadening from Pd vibration of neighbors—
and the causes of a peak shift, we have in situ char-
acterization of the hydrogen environment evolution with
temperature.
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APPENDIX: HARMONIC DISPLACEMENT
DISTRIBUTION AT FINITE TEMPERATURE

For an isolated harmonic oscillator of mass M and natural
frequency ω, we want to determine the probability distribution
of displacements x from equilibrium. The state energies are
En = h̄ω(n + 1/2), and so the probability of being in state n

at temperature T [β = (kBT )−1] is

zn = e−βEn∑
m e−βEm

= e−nβh̄ω(1 − e−βh̄ω). (A1)

The wave functions are

ψn(x) = (2nn!)−1/2
(
πx2

0

)−1/4
e−x2/2x2

0 Hn(x/x0) (A2)

for natural length x0 = √
h̄/mω and Hermite polynomial Hn.

Then the probability distribution of displacement x is

P (x) =
∞∑

n=0

zn |ψn(x)|2

= (1 − e−βh̄ω)
∞∑

n=0

e−nβh̄ω

2nn!
√

πx0
e−x2/x2

0 H 2
n (x/x0)

= 1 − e−βh̄ω

√
1 − e−2βh̄ω

1√
πx0

exp

(
−1 − e−βh̄ω

1 + e−βh̄ω
× x2

x2
0

)
= 1√

2πx̄(ω,T )
exp

(
− x2

2x̄2(ω,T )

)
, (A3)

where

x̄(ω,T ) =
[

h̄

2mω
coth

(
βh̄ω

2

)]1/2

(A4)

is the thermal Gaussian width; the simplification is possible
by using Mehler’s Hermite polynomial formula,32,33

∞∑
n=0

Hn(x)Hn(y)

n!

(w

2

)n

= (1 − w2)−1/2 exp

[
2xyw − (x2 + y2)w2

1 − w2

]
.
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In the low temperature limit, x̄ ≈ x0/
√

2 as expected
from zero-point motion; and in the high temperature

limit, x̄ ≈ (kBT /mω2)1/2, as expected from the equipartition
theorem.
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