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Ab initio based empirical potential used to study the mechanical properties of molybdenum
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Density-functional theory energies, forces, and elastic constants determine the parametrization of an empirical,
modified embedded-atom method potential for molybdenum. The accuracy and transferability of the potential are
verified by comparison to experimental and density-functional data for point defects, phonons, thermal expansion,
surface and stacking fault energies, and ideal shear strength. Searching the energy landscape predicted by the
potential using a genetic algorithm verifies that it reproduces not only the correct bcc ground state of molybdenum
but also all low-energy metastable phases. The potential is also applicable to the study of plastic deformation and
used to compute energies, core structures, and Peierls stresses of screw and edge dislocations.
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I. INTRODUCTION

Molybdenum’s high strength and high-temperature stability
make this refractory metal very attractive for use in advanced
process technologies. The motion of dislocations is generally
accepted to be responsible for the complex deformation
behavior of this transition metal.1–8 In recent years progress
has been made on the description of the properties of screw
dislocations using density-functional theory (DFT), tight-
binding calculations, and empirical potentials.9–19 However,
DFT and tight-binding techniques are limited to small system
sizes, which is problematic due to the long-range strain field of
dislocations, and current empirical potentials lack the required
accuracy for the description of the dislocation structure.
Simulations of dislocation motion and interactions require
efficient interatomic potentials which accurately describe the
dislocation energies, core structures, and motion.

In this work we develop an empirical potential for Mo which
predicts the ideal shear strength, generalized stacking fault en-
ergies, energies of dislocations, and the Peierls stress and core
structure of the 〈111〉/2 screw dislocation. The potential form
is given by the modified embedded-atom method (MEAM) and
the potential parameters are optimized using ab initio energies,
lattice parameters, forces, and elastic constants. Section II
describes the calculations for the DFT database, the functional
form of the MEAM potential, and the optimization of the
potential parameters to the DFT database. The accuracy of the
potential for structural, elastic, and defect properties is verified
in Sec. III by comparison to DFT results and experiments. A
genetic algorithm search of the energy landscape of the MEAM
potential confirms that the potential reproduces the correct
bcc ground state and predicts several low-energy metastable
structures whose energies agree well with DFT results. Results
of the MEAM potential for formation energies of point defects,
phonon dispersion, thermal expansion, surface energies, ideal
shear strength, and generalized stacking faults for the MEAM
potential closely match DFT results and available experimental
data. In Sec. IV we apply the potential to determine energies

and Peierls stresses of the screw and edge dislocation in bcc
Mo. The results show that the MEAM potential accurately
describes the structural and mechanical properties of Mo and
should be applicable to simulate the motion of dislocations
and the plastic deformation of Mo.

II. OPTIMIZATION OF THE EMPIRICAL POTENTIAL TO
DENSITY-FUNCTIONAL THEORY DATABASE

We develop an empirical potential to efficiently describe
the interactions between Mo atoms and to enable large-
scale molecular-dynamics (MD) simulations. The modified
embedded-atom method provides the form of the potential20–22

with potential parameters optimized to a database of DFT
calculations. The optimization of the model proceeds itera-
tively. Systematically adding DFT results to the fitting database
improves the accuracy and extends the applicability of the
model. This enables the development of a potential that
accurately reproduces the structural and mechanical properties
of Mo relevant for the description of its mechanical behavior.
Available experimental data and DFT calculations confirm the
accuracy of the resulting Mo MEAM potential.

A. Density-functional calculations

The DFT calculations are performed with VASP,23,24 which
is a density-functional code using a plane-wave basis and
the projector-augmented wave method.25,26 In addition to
the 4s and 5d valence states, the 4p semicore states are
treated explicitly to accurately describe interactions at small
interatomic separations. The Perdew-Burke-Ernzerhof (PBE)
generalized-gradient approximation (GGA) for the exchange-
correlation functional is used for the exchange-correlation
energy.27 A plane-wave energy cutoff of 600 eV ensures energy
convergence to 0.1 meV/atom. We keep the density of the
k-point mesh equivalent to a 31 × 31 × 31 mesh for the bcc
primitive cell for all DFT calculations.
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B. Modified embedded-atom potential

The MEAM formalism was originally developed by
Baskes20 as an extension of the embedded-atom method and
incorporates a series of four angular dependent terms with s,
p, d, and f character to model the effects of bond bending.
The original MEAM potential has been applied to a variety
of systems ranging from the semiconductors Si20,28 and Ge29

to bcc, fcc, and hcp metals30–32 and to several binary-alloy
systems.29,33

Lenosky et al. modified the original MEAM potential by
using cubic splines for the functional form.21 This removes
the constraint of fixed angular character and allows for
additional flexibility of the potential. Furthermore, the use
of splines reduces the cost of evaluation over the original
functional form, providing increased computational efficiency.
The spline-based MEAM was successfully applied to study
defects in Si21,34–40 and martensitic phase transformations in
Ti.22 This success of the spline-based MEAM, its improved
flexibility, and its higher computational efficiency motivate
our use of this functional form here. The MEAM potential
is implemented into two freely available large-scale parallel
molecular-dynamics codes.41,42

The MEAM potential21 used in this work separates the
energy into two parts, the pair energy and the embedding
energy:

E = 1

2

∑
ij

φ(rij ) +
∑

i

U (ni), (1)

with the density at atom i

ni =
∑

j

ρ(rij ) + 1

2

∑
jk

f (rij )f (rik)g[cos(θjik)], (2)

where θjik is the angle between atoms j , i, and k, centered
on atom i, and rij is the separation between atoms i and j .
The functional form contains as special cases the Stillinger-
Weber43 method [U (x) = x and ρ = 0] and the embedded-
atom method (EAM) (f = 0 or g = 0) potentials. The five
functions φ(r), U (ρ), ρ(r), f (r), and g[cos(θ )] are represented
by cubic splines.44 This allows for the necessary flexibility
to accurately describe complex systems and provides the
computational efficiency required for large-scale molecular-
dynamics simulations.

Splines are optimized from parameters of a good potential
for Nb, another refractory body-centered-cubic metal. This
optimization uses the Powell least-squares local optimizer.45

The niobium model parameters are obtained by first doing a
set of 62 global optimizations, followed by a set of 22 local
optimizations, with varying weights, cutoffs, and control
parameters. For the global optimizer, we use a least-squares
scheme based on the parallel tempering method.46–48 Table I
lists the resulting spline parameters of the Mo MEAM
potential. In the following section we compare the fit results
and prediction of the MEAM potential with DFT and
experimental data to establish the accuracy and transferability
of the potential.

The DFT database for the fitting of the potential parameters
consists of the formation energy of the vacancy using a 54 − 1

TABLE I. Parameters specifying the five cubic splines that comprise the Mo MEAM potential. The first part of the table lists the number
of knots N for each spline and the range of the spline variables tmin and tmax. The middle part of the table gives the values at equally spaced
spline knots defined by ti = tmin + i(tmax − tmin)/N where N is the number of spline knots. Finally, the derivatives of the splines at their end
points are listed in the last part of the table.

t tmin tmax N

φ r[Å] 2.011871291713 5.900000000000 13
ρ r[Å] 2.011871291713 5.100000000000 12
f r[Å] 2.011871291713 5.100000000000 12
U ρtot −95.855074371885 −32.122459255304 3
g cos(θ ) −1.000000000000 0.999879036544 8
i φ(ri) (eV) ρ(ri) f (ri) U (ρi) (eV) g(xi)

0 4.632438733669 −26.494449971737 3.388227678515 −1.501526682314 −0.129869313833
1 1.752489147287 −17.205090985947 2.420736204325 −0.356089776173 0.379321594386
2 0.438243695515 −8.514689239696 1.383682254891 2.322962191866 −0.005269150527
3 −0.015797259725 −4.576484741434 0.418171427726 −0.337540972877
4 −0.068300083022 −3.265714893932 −0.366113294172 −0.454061549494
5 −0.059263239247 −2.480415753371 −0.554323601336 −0.200674288922
6 −0.086981977667 −1.297204680368 −0.227358024429 −0.942045838810
7 −0.058881015541 −0.123839105776 −0.050257216206 −6.817412868037
8 −0.031430767187 0.000631923191 0.026183906447
9 −0.019141100155 −0.227021672597 0.000384787223
10 −0.007063383114 −0.081165548268 −0.000619452297
11 −0.001171831136 0.000000000000 0.000000000000
12 0.000000000000
i φ′(r) (eV/Å) ρ ′(r) (Å−1) f ′(r) (Å−1) U ′(ρ) (eV) g′(x)

0 −11.529904170892 0.000000000000 0.000000000000 0.022915774551 2.614296175470
N 0.000000000000 0.000000000000 0.000000000000 0.130788918963 −24.328955341990
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atom simulation cell, energies as a function of lattice constant
from a = 2.95 to 3.35 Å, elastic constants, and forces, all
computed for the bcc phase. For DFT forces, three atomic
configurations are generated from snapshots of ab initio
molecular-dynamics (MD) simulations with simulation cells
containing 125 atoms at 1270 K (bcc), 2320 K (bcc), and
5270 K (liquid). For the force data, the relative rms deviation of
the MEAM force magnitudes from the DFT values is 11%, and
the average angular deviation of the MEAM force directions
from the DFT force directions is 6.4◦. Weighting the averages
by the scaled DFT force magnitude decreases these values
further to 9% and 5.5◦, respectively.

"

III. ACCURACY OF THE MEAM POTENTIAL

We test the quality of the potential by comparing a wide
variety of computed properties to DFT calculations and
experimental data. We implemented the MEAM potential
into the LAMMPS52 code, which was used to perform all the
empirical potential simulations. Predictions of the potential
confirm its accuracy and transferability.

A. Structural and elastic properties

Table II compares the MEAM cohesive energies, lattice
parameters, and elastic constants with the DFT values for

TABLE II. The MEAM values for the cohesive energy, lattice
parameter, bulk modulus, and elastic constants of bcc Mo compared
to DFT and experiment. The energies and lattice parameters of the fcc,
hcp, β-W, β-Ta, ω-Ti, monoclinic C2/m, Fddd, and Pmma structures
are compared to DFT results. The energies are relative to the energy
of the bcc structure.

MEAMa GGA-PBEa Exp.

Ecoh (eV/atom) 6.82 6.25 6.82b

a (Å) 3.167 3.169 3.147c

B (G Pa) 253 263 270d

C11 (G Pa) 441 462 479d

C12 (G Pa) 158 163 165d

C44 (G Pa) 96 102 108d

�EC2/m−bcc (meV/atom) 198 164
�EPmma−bcc (meV/atom) 242 221
�EβW−bcc (meV/atom) 266 96
aβW (Å) 5.026 5.058
�EFddd−bcc (meV/atom) 269 233
�EβTa−bcc (meV/atom) 280 168
aβTa (Å) 9.719 9.752
cβTa (Å) 5.048 5.113
�EωTi−bcc (meV/atom) 332 404
aωTi (Å) 4.616 4.681
cωTi (Å) 2.595 2.572
�Efcc−bcc (meV/atom) 391 418
afcc (Å) 3.931 4.013
�Ehcp−bcc (meV/atom) 415 433
ahcp (Å) 2.743 2.765
chcp (Å) 4.692 4.905

aThis work.
bExperimental data from Brewer.49

cExperimental data from Pearson.50

dExperimental data from Simmons and Wang.51 The bulk modulus is
obtained from C11 and C12: B = (C11 + 2C12)/3.

the experimentally observed bcc phase and the fcc, hcp,
β-W, β-Ta, ω-Ti, monoclinic C2/m, orthorhombic Fddd, and
orthorhombic Pmma structures. The experimental cohesive
energy of the bcc structure is 6.82 eV, and DFT produces
a cohesive energy 8% lower than the experimental value.53

The MEAM is fitted to the experimental cohesive energy.
The fitted lattice parameter of the MEAM potential, 3.167 Å,
agrees closely with the DFT value of 3.169 Å.

The bcc crystal structure is stable against the fcc and hcp
structures. DFT predicts that the energies of fcc and hcp
Mo are 418 and 433 meV/atom larger than the bcc value,
respectively. The MEAM potential predicts similar values of
391 and 415 meV/atom. Our MEAM potential predicts a c/a

value of 1.71 for the hcp structure, closely matching the DFT
value of 1.77. In addition, energies with the MEAM potential
for the β-W, β-Ta, and ω-Ti structures are higher than the
bcc energy. The lattice parameters of all the structures are
reproduced reasonably well, with the largest error being for
the hcp c value. No DFT data for the fcc, hcp, β-W, β-Ta, and
ω-Ti structures are included in the fitting database.

The calculated DFT bulk modulus and elastic constants
match experimental values within 5% error. The fitted MEAM
values agree with the DFT values within 6%. The bulk
modulus is determined by calculating the energy of bcc Mo
for the volume range 0.90V0 < V < 1.10V0, where V0 is
the equilibrium volume, and fitting the third-order Birch-
Murnaghan equation of state54,55 to the results. The elastic
constants are determined by applying several strains ranging
from −1 to +1%. The DFT and MEAM elastic constants are
evaluated at the respective computed equilibrium volume of
each method.

B. Potential-energy landscape

The GASP code56,57 (genetic algorithm for structure pre-
diction) was used to search for low-energy structures using
the MEAM potential. This algorithm begins by randomly
generating a population of structures. These structures are
relaxed using LAMMPS and ranked according to their energies.
The better (lower-energy) structures are more likely to be used
to create a subsequent generation of candidate solutions. This
reproduction occurs via several operators designed to pass
down essential properties of parent structures to the children.
In this way, the population of structures improves over time,
and the algorithm should find the ground state and many other
low-energy structures.

This search allows us to check that our potential reproduces
the known true ground state of molybdenum (a bcc crystal) and
to identify low-energy metastable phases. Unit cells of up to 40
atoms were considered, and the search ran for 100 generations
with 100 distinct candidate structures in each generation.
The bcc and various defect and metastable structures were
encountered by the algorithm many times. The bcc crystal is
the lowest-energy structure found.

In addition to many structures representing defects in a
bcc cell, several notable metastable crystal structures were
identified by the genetic algorithm. The lowest energy of
these is a five-atom monoclinic C2/m structure. The formation
energy per atom compared to bcc according to MEAM (DFT)
is +198 meV/atom (+164 meV/atom). Next, we find a
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TABLE III. Comparison of defect formation energies in units of
eV in bcc Mo between DFT calculations and empirical potentials. For
the vacancy, migration energies are shown as well. Only the vacancy
formation energy is included in the fitting database.

Defect MEAMa DFTa DFTb DFTc MGPTd F-Se

Vacancy 2.96 2.79 2.96 2.9 2.5
Vac. migration 1.64 1.22 1.28 1.6 1.3
Octahedral 8.07 9.05 9.07 8.86 17.5 7.6
Tetrahedral 8.20 8.47 8.40 8.20 14.9 7.6
〈001〉 dumbbell 7.82 8.90 9.00 8.77 16.3 7.2
〈011〉 dumbbell 7.68 7.66 7.58 7.51 10.9 7.0
〈111〉 dumbbell 7.66 7.52 7.42 7.34 14.2 7.3
Crowdion 7.64 7.52 7.42 7.34 13.9 7.2

aThis work.
bDFT results of Nguyen-Manh et al.58

cDFT results of Han et al.59

dMGPT results of Xu and Moriarty.9
eF-S results of Harder and Bacon.60

four-atom structure with space group 51 (Pmma) and with
a MEAM (DFT) energy relative to bcc of +242 meV/atom
(+221 meV/atom). The A15 (β-W) phase is +266 meV/atom
(+96 meV/atom) above bcc, and a two-atom structure
with space group 70 (Fddd) has energy +269 meV/atom
(+233 meV/atom) above bcc. Table II includes a summary
of these structures, and Fig. 2(a) shows energy-volume curves
of three metastable phases and bcc for the DFT calculations
and the MEAM potential.

We found no other crystal structures within 270 meV of
the ground state. This result provides very strong indication
that this potential has the correct ground state and that no
other crystal phase should occur in any MD simulations for
pressure and temperature ranges as described in this paper.
The potential’s reproduction of the correct ground state and
accurate description of the low-lying metastable structures
indicate that the potential captures many of the important
properties of the ab initio potential-energy landscape.

C. Point defects

Vacancies have important implications for many material
processes including dislocation motion and creep. On the other
hand, the equilibrium concentration of self-interstitial atoms
in metals is much smaller than the concentration of vacancies.
Accordingly, we include the energy and the relaxed atomic
configuration of the vacancy in our fitting database, but not
from interstitial configurations. We use 251-atom and 6750-
atom simulation cells for our DFT and MEAM calculations,
respectively, to determine the formation and the migration
energies of the vacancy and the formation energies of six self-
interstitial configurations.

Table III lists our DFT and MEAM results, along with
other published DFT,58,59 model generalized pseudopotential
theory (MGPT) potential,9 and Finnis-Sinclair potential60

results. Vacancy formation energies from our MEAM potential
and DFT calculations closely agree with the previous DFT
results and are within the range of experimental values.61 The
MEAM potential reproduces the high formation energies of
all the interstitial structures reasonably well with the largest
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FIG. 1. (Color online) Phonon-dispersion curves for the
empirical MEAM potential compared to experiment62 and our DFT
calculations. The MEAM and DFT results match experiment well
over the three high-symmetry directions shown.

error for octahedral and 〈001〉 split dumbbell interstitials. For
the crowdion, 〈111〉 split, and 〈011〉 split interstitials, the
differences between our MEAM and DFT values are less
than 2%.

D. Phonon dispersion, equation of state, thermal expansion,
and melting temperature

We compute the phonon spectra along high-symmetry di-
rections in the Brillouin zone and calculate the thermodynamic
behavior of the potential. These calculations demonstrate the
applicability of the potential over a large range of temperatures
and pressures.

Figure 1 compares the computed phonon spectra along
the [ξ00], [ξξξ ], and [ξξ0] directions to experimental data62

and our DFT calculations. The results of our MEAM potential
closely match the experimental data and our DFT calculation
over much of the Brillouin zone, reflecting the accuracy
of the force matching and the elastic constants. Our DFT
calculation is carried out with 512 atoms (an 8 × 8 × 8
supercell). Since we employ the small-displacement method,65

using this large supercell greatly improves the agreement of our
DFT calculations with experiment over previously published
results.19

Figure 2(a) shows the result of the energy fit at different vol-
umes for the bcc phase and calculated energy-volume curves
for three lowest metastable phases described in Sec. III B.
The DFT and MEAM energies of the bcc phases are in
excellent agreement for the fitted range of −19 to +18% V0.
Energy-volume curves for three lowest metastable phases are
computed for the range of −15 to +15% V0. The agreement
between DFT and MEAM energy-volume curves for these
metastable phases is not satisfactory, and it is anticipated
considering that only bcc phase data are included in the fitting
database. However, since the MEAM potential accurately
reproduces the energy-volume curve for the bcc phase and
has bcc as the most stable phase for the range of volumes we
studied, we believe that the MEAM potential is sufficient to
study mechanical properties of bcc Mo. Figure 2(b) shows the
pressure variation of the MEAM potential versus the relative
volume V/V0, where V0 is the zero-pressure volume, from
static calculations and from N-P-T MD simulations at 293 K.
We compare the results to data from shock experiments63 and
our zero-temperature DFT calculations. For pressures up to
30 G Pa, the agreement of the MEAM potential with DFT and
experiment is excellent with pressure deviations of less than 1
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FIG. 2. (Color online) (a) Fitted energies of bcc Mo as a function
of volume and calculated energy-volume curves for the three lowest
metastable phases. (b) Pressure vs volume curve. The experimental
data are from shock experiments.63 For pressures up to 80 G Pa, our
MEAM potential agrees well with experimental data and our DFT
calculations. (c) Thermal-expansion curve. The thermal expansion of
our MEAM potential agrees closely with experiments64 up to 2000 K.

G Pa. There is a kink around V/V0 = 0.87 in static calculation
results for our MEAM potential. We find that the kink is caused
by the discontinuity of curvature in the energy-volume curve
of the MEAM potential, at V = 13.8 Å3/atom in Fig. 2(a).
However, this second-order derivative discontinuity is hardly
noticeable in Fig. 2(a) and causes less than 5-G Pa deviations of
our MEAM results from DFT and experiment data in Fig. 2(b).
The kink is less pronounced in results from simulations at
293 K. Constant-N-P-T MD simulations of 2000 atoms at
T = 293 K are performed with a 2-G Pa pressure step to
yield the pressure-volume curve. Each MD simulation runs
for 50 000 steps with a 1-fs time step, and we determine
the volume for each pressure by averaging over the last 5000
simulation steps.

Figure 2(c) shows the thermal expansion of the MEAM
potential for temperatures up to 2000 K. Our results closely
follow the experimental data,64 indicating that the potential
accurately interpolates to temperatures not included in the fit.
Constant-N-P-T MD simulations of 2000 atoms at P = 1 atm
yield the thermal-expansion curve. Each MD simulation runs
for 50 000 steps with a 1-fs time step and the lattice constant
for each temperature is determined by averaging over the last
5000 simulation steps.

Two-phase melting simulations, in which the simulation
cells contain solid and liquid in contact with each other, pro-
duce reliable melting temperatures. We follow the approach of
Belonoshko et al.,68 in which constant-N-P-T MD simulations
determine the melting temperature. Simulations with about
16 500 atoms run for 500 000 steps with a 1-fs time step. We
check the coexistence of the phases at the melting temperature
using at least five independent simulations. We find that
130 000-atom simulations produce the same melting tem-
peratures as 16 500-atom simulations. The simulated melting
temperature of the bcc phase at P = 1 atm is Tm = 3220 ± 10
K. Like our previous MEAM potentials for Si (Ref. 21) and Ti
(Ref. 22), and the EAM potential for Nb (Ref. 69), the simu-
lated melting temperature for our Mo MEAM is in good agree-
ment with the experimentally measured value. It is about 10%
higher than the experimental melting temperature of 2900 K.70

E. Surface energies

Surface properties serve as a good test bed for the transfer-
ability of our potential to configurations with low coordination
numbers, since no surface data are used in constructing the
potential. Table IV lists the relaxed surface energies and the
surface relaxations for the {110}, {100}, and {111} surfaces.
We compare the surface energies to our DFT results and
published MEAM calculations.67 The experimental value of
180 meV/Å2 is an extrapolated value for polycrystalline Mo
based on the temperature dependency of surface energies.66

The {100} surfaces of Mo undergo a reconstruction near
room temperature.71 However, the simply relaxed (1 × 1)
surface structure is at least metastable against any known
reconstruction.72 All the values in Table IV are for unrecon-
structed surfaces. The overall agreement of the MEAM surface
energies with the DFT values is quite good, considering the fact
that free surfaces are not used to optimize the potential. The

TABLE IV. Low-index surface energies of bcc Mo in meV/Å2 and
the relative percent change in the interplanar spacing between the first
and the second layers upon relaxation in parentheses. Our MEAM
results closely match our DFT values, even though no surface data are
used to construct the potential. The experimental value, 180 meV/Å2,
is for a polycrystalline solid and extrapolated from high-temperature
experimental data to room temperature.66

Surface MEAMa GGA-PBEa MEAMb

E
{110}
surf 164 (−4.5%) 174 (−4.4%) 180 (−3.3%)

E
{100}
surf 180 (−11.0%) 200 (−12.3%) 195 (−3.3%)

E
{111}
surf 201 (−23.6%) 186 (−20.8%) 211 (−14.0%)

aThis work.
b2NN MEAM results of Lee et al.67
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FIG. 3. (Color online) Ideal shear strength of bcc Mo calculated
with the MEAM potential and DFT: (a) energy barrier W (x) and
(b) shear stress τ (x).

deviations are within 10%, and the {110} is the lowest-energy
surface for DFT and MEAM potentials. Our MEAM values for
the percent changes in the relaxed spacing between the first
and second surface layers agree very closely with our DFT
calculations.

The MEAM calculations use slab-geometry simulation
cells with two free surfaces and periodic boundary conditions
in the directions perpendicular to the surface normals. Our
MEAM calculations use 300-layer slabs. The DFT calculations
use a 48-layer slab for the {100} surface and 24-layer slabs
for the {110} and {111} surfaces. A vacuum region 15 Å thick
separates the periodic surface images for the DFT calculations.

F. Ideal shear strength

Figure 3 compares the ideal shear strength of the MEAM
potential with our DFT results, without tensile relaxation. The
ideal shear strength is defined as the maximum stress, τc, along
the twinning path transforming the directions [1̄11] and [11̄1]
into 1/3[2̄12] and 1/3[12̄2], respectively.9,73 The ideal shear
stress occurs at the critical shear xc that separates regimes of
elastic and plastic deformation of the crystal. We compute
energies of 1000 deformed structures along the twinning
path for both our MEAM and DFT and calculate the barrier
height Wc. Numerical differentiation of these energies with
respect to shear generates shear stresses and determines the
critical stress τc and the critical shear xc. Table V compares
our MEAM results to our DFT results, published results
from the full potential linear muffin-tin orbital (FPLMTO)
using the local-density approximation functional,73 and MGPT
calculations.9 Results of our MEAM potential agree with
our DFT values within 15% for both energy and stress. No

TABLE V. Calculated ideal shear strength for Mo. Barrier height
Wc is in eV and critical stress is in G Pa.

MEAMa GGA-PBEa FPLMTOb MGPTc

Wc 0.30 0.35 0.42 0.47
xc 0.24 0.25 0.26 0.27
τc 9.9 11.4 19 23.7

aThis work.
bNon-self-consistent results of Paxton et al.73

cMGPT results of Xu and Moriarty.9

deformed structures along the twinning path are included in
our fitting database.

G. {110} and {112} γ surfaces

The energies of the generalized stacking faults, or γ

surfaces,74 are related to the dislocation core structure and
the Peierls stress. A generalized stacking fault is obtained by
cutting a perfect crystal across a single plane into two parts and
displacing the parts relative to each other by an in-plane vector
d. The excess energy γ (d) generates a surface which represents
the energies of generalized stacking faults. The restoring stress
acting across the plane has the same interpretation as the
restoring stress in the Peierls-Nabarro dislocation model.

The γ surfaces provide an ideal test of the accuracy of
the MEAM potential under changes in bond direction and
coordination number. We use our MEAM potential to compute
unrelaxed and relaxed (112) and (011) γ surfaces in the [1̄1̄1]
direction. In the relaxed MEAM calculations, the atoms are
allowed to move only in the direction perpendicular to the
fault plane. Figure 4 compares the energies of the γ surfaces
of MEAM with the unrelaxed DFT results. Our MEAM results
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80
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FIG. 4. (Color online) Cross sections of the (112) and (011) γ

surfaces calculated with the MEAM potential and by DFT.
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show slightly less asymmetry for the (112) γ surface than DFT,
but the overall agreement is very good considering no stacking
fault data are included in the fitting database.

For γ -surface calculations of our MEAM potential, 60 000-
atom cells are used. [11̄0], [111̄], and [112] are chosen along
the x, y, and z axes, respectively, for the {211} γ line
calculation, and [112], [111̄], and [11̄0] are used for the {110}.
The DFT calculations use supercells with 24 layers for the
{211} and 12 layers for the {110} fault plane. Energies are
calculated as the top half of the block in the z axis is displaced
along [111̄]. To apply the periodic boundary conditions in all
three dimensions, the lattice vector of the supercell in the z axis
is inclined by the displacement vector of the top half block.
For the relaxed line, the atomic positions are relaxed only in
the direction perpendicular to the cut plane, i.e., along the z

axis. Computational cells with 24 atoms are used for DFT
calculations.

IV. APPLICATION TO DISLOCATIONS

The low-temperature plasticity of bcc metals is dominated
by the properties of 〈111〉/2 screw dislocations. In contrast
to the highly mobile edge dislocation, the screw dislocation
motion is constrained by the large primary Peierls barrier for
double kink nucleation. In order to model the screw dislocation
core, a cell is constructed using the lattice directions: 〈12̄1〉,
〈1̄01〉, and 〈111〉. In this dislocation coordinate system the third
lattice vector is chosen parallel to the dislocation line direction
and the Burgers vector, consistent with the definition of a screw
dislocation [see Fig. 6(a)]. Periodic boundary conditions are
applied along 〈111〉 using a periodic unit of a/2〈111〉. The
first two lattice vectors are then used to define a large, 91 160-
atom cell and the atomic positions are displaced according
to the anisotropic elastic strain field of an a/2〈111〉 screw
dislocation. In order to relax the dislocation core, the regions
near the surface of the cell are held fixed while the forces
for an inner region of 76 610 atoms are optimized based on
the interatomic forces. This approach allows the long-range
anisotropic solution to provide the correct boundary conditions
for the cell interior. The detailed description of the simulation
setup can be found in our previous work on an EAM potential
for niobium.69 For the 1

2 〈111〉{112} edge dislocation we use a
similar fixed-boundary condition and a total of 148 368 atoms
with 137 928 atoms in the inner relaxed region.

In general elasticity theory of dislocation, the energy of
a dislocation per unit length, E, comes from the elastic part
that is contained in the elastically strained bonds outside the
radius r0 and from the energy stored in the core, which is not
amenable to elasticity theory and cannot be defined uniquely.
For the screw dislocation,

Es = Es
core + Kb2

4π
ln

(
r

r0

)
, (3)

and, for the edge dislocation,

Ee = Ee
core + Kb2

4π (1 − ν)
ln

(
r

r0

)
, (4)

where r0 is the core radius of the dislocation and r is
the external radius of the elastic cylinder containing the
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r b
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FIG. 5. (Color online) Energy of the 〈111〉/2 screw dislocation
and the 1

2 〈111〉{112} edge dislocation as functions of radius for the
MEAM potential. The fitted points for r > 20 Å are shown as dashed
lines extrapolated to r = 0.

dislocation. K is the shear modulus that only depends on the
elastic constants75 and ν is Poisson’s ratio.

Figure 5 shows the fit of this equation to the MEAM results
for the screw and edge dislocation. There is little scatter of the
energy down to the atomic scale. Using the MEAM values of
the elastic constants we calculate K = 126 G Pa and ν = 0.29.
The fit to the dislocation energy yields K = 124 G Pa and
ν = 0.24. The core energy per unit length for a chosen core
radius of 2b of the screw dislocation (0.784 eV/Å) is lower
than for the edge (1.036 eV/Å).

Figure 6(a) shows the relaxed core structure of the 〈111〉/2
screw dislocation. The core structure is symmetric with atomic
displacements spread symmetrically across the (1̄01), (01̄1),
and (1̄10) planes. The same type of core structure of the
screw dislocation of Mo is obtained by DFT methods13,19 and
tight binding.16 The results are presented using differential
displacement maps introduced by Vitek et al.77 The atoms are
projected into the (111) plane, and the arrows represent relative
atomic displacements of neighboring atoms in the [111]. The
lengths of the arrows are scaled such that an arrow connects
two atoms if the difference in their displacements is b/3. The
shadings of the atoms indicate that there are three repeating
layers of atoms in the [111] direction in an ideal crystal.

Figure 6(b) shows Peierls stresses for dislocation motion
for various orientations of the maximum resolved shear stress
plane (MRSSP). We use χ to represent the angle between
the MRSSP and the (1̄01) planes. We gradually increase the
strain on the structure with the dislocation and allow the
atoms to relax after each increase in strain. The resulting
shear stress acts in the MRSSP, and the dislocation moves
when the stress reaches the Peierls stress. The dislocation
moves along the (1̄01) plane for all the MRSSP orientations of
−30 < χ < 30◦. The results of Fig. 6(b) clearly demonstrate
the dependence of the Peierls stress on the sense of shearing
and illustrate the well-known breakdown of Schmid’s law in
bcc metals.1–8 Schmid’s law predicts slip begins when the shear
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FIG. 6. (Color online) (a) Differential displacement plots of
a 〈111〉/2 screw dislocation in Mo and (b) Peierls stresses for
dislocation motion as a function of MRSSP orientation.

stress resolved on the slip plane and slip direction exceeds
the critical resolved shear stress, independent of any other
stress components. Deviation from Schmid’s law starts around
χ � 15◦ and rapidly increases as the MRSSP approaches the
(2̄11) plane.

For pure shear on the (1̄01) plane (χ = 0) the Peierls stress
of our MEAM potential for the 〈111〉/2 screw dislocation is
1.79 G Pa. This value is an order of magnitude higher than the
calculated Peierls stress value of 0.15 G Pa for the 1

2 〈111〉{112}
edge dislocation, confirming that the plastic behavior of bcc
metals is mainly controlled by screw dislocations. Table VI
lists results of our MEAM potential for χ = −30, 0, and
30◦ along with experimental data76 and results from previous
calculations. For the (1̄01) plane the predictions of the Peierls
stress vary between 1.8 and 3.8 G Pa depending on the
method and simulation setup.10,12,13,16,17,19 However, all these
simulated Peierls stresses are two to four times higher than the
experimental value of 0.87 G Pa. This discrepancy between
experimentally measured yield stresses and the values from the
atomistic simulations has been noted for most bcc metals. It has
been proposed that the internal stress concentrations due to the
elastic interaction among a large number of dislocations on the
mesoscopic scale may be the origin of the lower yield stresses

TABLE VI. Peierls stress for the 〈111〉/2 screw dislocation in bcc
Mo. The stresses are given in units of G Pa. The experimental values
are estimated by extrapolation of the low-temperature experiments of
Ref. 76 to T = 0.

Twinning (1̄1̄2) (1̄01) Antitwinning (2̄11)

Experimenta 0.69 0.87 –
MEAMb 2.02 1.79 2.36
DFTc – 1.8 –
FP-GFBCd 1.74 2.09 3.48
BOPe 2.8 2.6 3.5
MGPTf 2.34 2.61 7.29
MGPTg – 3.44 –
Tight bindingh – 3.8 –
F-Sh – 2.4 –

aExperimental data.76

bThis work.
cDFT results of Shimizu et al.19

dFirst-principles GFBC results of Woodward and Rao.13

eBOP results of Mrovec et al.17

fMGPT results of Rao and Woodward.12

gMGPT results of Xu and Moriarty.10

hResults of Li et al.16

of experimental samples.8 Another possible explanation for the
discrepancy is that at elevated stress the energetic barriers for
kink nucleation are so reduced that a single nucleation event
can trigger a series of subsequent nucleation events. Such an
avalanche of kink nucleation events would lead to an increased
traversal distance per nucleation event and, hence, to a lower
activation energy than calculated for dislocation motion.78

V. CONCLUSION

We developed and tested an empirical potential that
accurately describes the mechanical properties of the tech-
nologically important Mo system. The potential is of the
modified embedded-atom form, ensuring computational ef-
ficiency, with parameters optimized to density-functional
calculations. The predictions of the potential closely match
density-functional results for structural and elastic proper-
ties, phonon frequencies, point defect formation energies,
compression and thermal-expansion curves, surface energies,
ideal shear strength, and gamma surfaces even when these
were not included in the fitting procedure. The empirical
potential captures many features of the DFT potential-energy
landscape, as verified by the close agreement of the relative
energies of metastable crystal structures found using a genetic
algorithm structure generator. The accuracy of the potential for
mechanical properties of Mo was successfully demonstrated
by calculating the core structures, energies, and Peierls stresses
of screw and edge dislocations.
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