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Abstract

We develop a geometry-based model from first-principles data for the interaction of solutes with a prismatic screw dislocation core,
and predict the thermally activated cross-slip stress above room temperature in Mg alloys. Electronic structure methods provide data
for the change in prismatic stacking fault energy for different possible fault configurations for 29 different solutes. The direct solute–
dislocation interaction energies for solutes that produce stable prismatic screw dislocation cores (K, Na, Sc and Ca) is correlated with
stacking fault misfits. This geometric interaction model produces similar prediction errors for all 29 solutes. The model predicts alloys
with cross-slip stresses lower than pure Mg for three previously considered solutes (K, Na and Sc) and three new solutes (Ca, Y and Zr).
The model also qualitatively confirms the experimental observation that Mg–Li alloys have lower cross-slip stress than pure Mg. In par-
ticular, low concentrations of Y are predicted to significantly decrease the cross-slip stress in Mg.
� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Expanding the use of the lightweight structural metal
Mg—as a replacement for Al and steels in automotive
applications [1]—requires the solution of a variety of met-
allurgical issues [2], including formability. Current Mg
alloys require temperatures near 300 �C for forming (e.g.
warm stamping) to activate the five independent slip sys-
tems required by the von Mises criterion [3]; this is in part
due to the large anisotropy between basal and prismatic
slip [4]. Cross-slip of a-type dislocations from the (0 0 0 1)
basal plane onto the ð0 1 �1 0Þ prismatic plane requires large
stresses or high temperatures. Experimentally, few solutes
have been found to lower the stress for cross-slip: Al and
Zn lower the stress at low (below room) temperatures [5],
while Li can lower the cross-slip stress in both regimes
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[6–9]. The difficulty of performing experiments to measure
cross-slip stresses for alloys—requiring single-crystal sam-
ples oriented for prismatic slip—is compounded by the
possibility that, like solid-solution softening in body-
centered cubic (bcc) alloys [10], it may occur over a limited
concentration and temperature range. Hence, we have
developed new state-of-the-art first-principles predictions
of solute–dislocation interactions coupled with computa-
tional modeling of thermally activated cross-slip in the
presence of solutes to guide the design of new Mg alloys
that can be formed at temperatures below 300 �C [11].

In previous work, we developed a numerical model (and
analytic approximation) to predict basal to prismatic cross-
slip stress in Mg in the presence of solutes from density-
functional theory (DFT) dislocation–solute interaction
data [11]. The results were limited to solutes that would
not destabilize the prismatic screw dislocation core after
substitution. Despite this limitation, three binary alloys—
Mg–K, Mg–Na and Mg–Sc—were predicted to lower the
rights reserved.
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thermally activated cross-slip stress. The thermal cross-slip
model was based on changes in prismatic kink energies in
the presence of a random field of solutes; the double-kink
nucleation model is valid above room temperature up to
approximately 700 K. The model [11] has been validated
both by comparing the mechanism against in situ charac-
terization of cross-slip [12–14] in this temperature regime
and the measurement of single-crystal cross-slip stress with
temperature [15]. Prismatic kinks must nucleate, separate
and propagate along the line in the presence of a random
field of solutes; the solutes produce distributions of
enthalpy barriers for these processes. The solute distribu-
tion is assumed to be random to describe the flow of dislo-
cations after breaking away from any kind of initial solute
field, but excluding solute drag. The effect of multiple sol-
utes is considered to be additive, and solute–solute interac-
tion energies which could produce short-range ordering of
the solutes is ignored. This model has analytic dilute-limit
predictions of changes in cross-slip stress as well as non-
dilute predictions.

The previous predictions required that solutes not desta-
bilize the prismatic core to compute an interaction energy;
however, other solutes may reduce the stress for cross-slip
as long as the energy of solutes in a prismatic core was
reduced relative to the same site in the basal screw disloca-
tion core. Here, we develop a geometry-based model for
the interaction energy of solutes with a prismatic screw dis-
location core that is optimized to reproduce direct interac-
tion data [11]. This model allows the prediction of
interactions with prismatic cores for 29 solutes (the same
considered in an earlier study of basal strengthening [16])
whether the interaction is attractive or repulsive. Combined
with our model for thermally activated cross-slip [11], we
predict changes in cross-slip stress with temperature and
concentration. Of the 29 solutes, six lower the cross-slip
stress: Ca, K, Na, Sc, Y and Zr. The interaction of Li is
weaker than the prediction error of our model, though it
is consistent with experimental observations of softening.
We connect the prismatic stacking fault geometry to the
prismatic screw dislocation core geometry to quantitatively
correlate changes in stacking fault energy to interaction
energies, and hence predict the cross-slip stress of binary
Mg alloys. Hence, we can predict new, more formable
Mg alloys from solute misfit data.

2. Computational methodology

To model the interaction of solutes with the Mg pris-
matic screw dislocation core, solute interactions with the
prismatic stacking faults were calculated within DFT using
VASP [17,18]. We use a plane-wave basis set with the projec-
tor augmented-wave (PAW) method [19] with potentials
generated by Kresse and Joubert [20]. The Perdew–Wang
91 generalized gradient approximation exchange–correla-
tion potential [21] and a plane-wave kinetic energy cutoff
of 273 eV for pure Mg ensures accurate treatment of the
potentials. Plane-wave cutoffs and electronic configurations
for the PAW potentials for solutes in Mg are provided in
Table 1. To calculate the chemical misfits for solute X in
Eq. (1), we calculate stacking faults with a 5

ffiffiffi
3
p

a� 2a� 2c
(Mg79–X1) supercell and a 1 � 17 � 16 k-point mesh with
a Methfessel–Paxton smearing of 0.5 eV; atoms are relaxed
normal to the fault plane to within 5 meV Å�1, for an
energy accuracy of 5 meV. Energies of individual Mg atoms
at different planes in the stacking fault (see below) are also
computed with an embedded atom method (EAM) poten-
tial [22]; it has been validated with basal and prismatic screw
dislocation core structures and stacking fault energies in Mg
[23]. The screw dislocation core geometries with Burgers
vector ~b ¼ a

3
½2 �1 �1 0� have previously been calculated for

the basal geometry [23] and prismatic geometry [11].

3. Results

Fig. 1 shows the possible prismatic ð0 1 �1 0Þ stacking
fault geometries and energies in magnesium from PAW
and EAM. The prismatic plane is corrugated, with two
possible choices of cut plane for the stacking fault, “easy”

and “hard,” with unrelaxed planar separations affiffi
3
p and a

2
ffiffi
3
p ,

respectively. Atoms across the fault plane are displaced
by b=2 ¼ a

6
½2 �1 �1 0� relative to their bulk positions to form

an unstable stacking fault. The hard stacking fault is more
than twice the energy of the easy stacking fault at the
a
6
½2 �1 �1 0�; this is due to the displacement of twice the num-

ber of nearest-neighbor bonds relative to the easy fault.
Inside of the prismatic screw dislocation core, displace-
ments corresponding to both faults appear. Moreover,
there are two possible sites for solute substitution, and sim-
ilarly, both geometries appear in the prismatic screw dislo-
cation core. The EAM calculations agree well with the
PAW potential. In addition, the EAM potential provides
information about the partitioning of energy between the
two planes: the energy change for a Mg atom in the easy
fault is EMg-prism

E1 ¼ 74 meV for the first plane and
EMg-prism

E2 ¼ 54 meV for the second compared to bulk; while
for the hard fault, the Mg atom energy is EMg-prism

H1 ¼
205 meV for the first plane and EMg-prism

H2 ¼ 23 meV for the
second compared to bulk. This energy is not known from
DFT, only the total fault energy. We use these changes
to determine what fraction of the stacking fault energy
change is due to a solute.

Table 1 gives the solute misfits—changes in stacking
fault energies—for 29 different substitutional solutes in
Mg. To predict the solute energies in the prismatic core,
we need to know how the stacking fault displacements
change the energy of solute compared with bulk. For each
solute, we compute the energy with the solute in the bulk
and in each of the two planes for each fault, with relaxation
normal to the fault plane. We then subtract the energy of
the remaining Mg atoms in both planes of the fault, so that
only the change in energy of the solute atom remains. This
subtraction is equivalent to subtracting off the total fault
energy without a solute and adding in the energy for a
Mg atom at the substitutional site. Finally, we scale the



Table 1
Solute misfits in Mg from DFT. Misfits are defined as fractional change of site energy for a solute in a fault (cf. Eqn. (1)). We compute six different unitless
misfits: easy prismatic stacking fault energy for solutes in the first (eE1) and second (eE2) planes from the fault; hard prismatic stacking fault energy for
solutes in the first (eH1) and second (eH2) planes from the fault; and from Ref. [16], basal stacking fault energy for solutes in the slip plane (eSFE) and size
misfit (eb). The PAW valence configuration and energy cutoff are also listed. Solutes marked by an asterisk (�) lead to a stable prismatic core, and are used
to fit the solute–dislocation interaction model.

PAWPP Cutoff eE1 eE2 eH1 eH2 eSFE eb

Ag [Kr]4d105s1 325 eV 1.172 �0.223 0.184 0.211 1.93 �0.171
Al [Ne]3s23p1 313 0.843 �0.187 0.165 0.043 �1.25 �0.115
As ([Ar]3d10)4s24p3 273 0.415 �1.325 �0.697 �0.099 �3.60 �0.145

Be [He]2s2 390 1.137 �0.647 0.032 0.124 1.34 �0.252
Bi ([Xe]4f145d10)6s26p3 273 0.014 �0.701 �0.416 �0.102 �4.45 0.162
Ca* [Ar]4s2 273 �1.554 0.633 0.711 �0.304 �1.39 0.282

Cd [Kr]4d105s2 357 0.771 �0.121 0.130 0.100 �0.06 �0.046
Ga ([Ar]3d10)4s24p1 273 0.733 �0.426 �0.006 0.012 �1.09 �0.119
Ge ([Ar]3d10)4s24p2 273 0.753 �0.740 �0.230 0.002 �2.04 �0.139

Hg ([Xe]4f14)5d106s2 303 0.793 �0.408 �0.063 0.062 �0.18 �0.073
In ([Kr]4d10)5s25p1 273 0.408 �0.257 0.021 �0.017 �1.58 0.028
Ir ([Xe]4f14)5d86s1 274 2.324 0.096 0.914 0.544 4.33 �0.435

K* [Mg]3p64s1 273 �1.717 �0.207 �0.195 �0.474 �3.38 0.425
Li [He]2s1 273 0.422 0.209 0.408 0.107 1.89 �0.058
Mn [Ar]3d64s1 351 1.683 0.720 1.241 0.415 2.12 �0.356

Na* [Ne]3s1 273 �0.371 0.156 0.253 �0.074 0.29 0.126
Pb ([Xe]4f145d10)6s26p2 273 0.033 �0.446 �0.177 �0.069 �3.00 0.132
Pd [Kr]4d95s1 326 1.596 �0.283 0.404 0.374 3.75 �0.318

Pt ([Xe]4f14)5d96s1 299 1.704 �0.508 0.336 0.378 3.39 �0.377
Ru [Kr]4d75s1 277 2.280 0.708 1.379 0.595 3.92 �0.401
Sb ([Kr]4d10)5s25p3 273 0.329 �0.845 �0.498 �0.110 �4.65 0.046

Sc* [Ar]3d24s1 273 �0.510 1.278 1.343 �0.038 �1.20 0.035
Si [Ne]3s23p2 319 0.825 �0.903 �0.276 �0.002 �2.03 �0.199
Sn ([Kr]4d10)5s25p2 273 0.372 �0.485 �0.164 �0.052 �3.08 0.037

Ti [Ar]3d34s1 273 0.355 1.412 1.495 0.141 �0.81 �0.149
Tl ([Xe]4f145d10)6s26p1 273 0.201 �0.359 �0.109 �0.048 �1.61 0.047
Y ([Ar]3d10)4s24p64d15s2 275 �1.596 1.240 1.332 �0.262 �1.70 0.212

Zn [Ar]3d104s2 360 0.910 �0.354 0.061 0.079 0.32 �0.153
Zr [Kr]4d35s1 273 �0.444 1.709 1.777 0.052 �1.27 �0.038
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solute energy by the total fault energy to define a unitless
“misfit” for solute X in fault f = (E, H) in plane p = (1, 2)
as:

efpðXÞ ¼
EfpðMg79X1Þ � EbulkðMg79X1Þ � 4cacf þ EMg-prism

fp

cacf

ð1Þ
for lattice constants a and c and fault energy cf. In addition
to this data from the prismatic faults, we use two misfits for
the basal core interaction: solute-induced changes to the
basal stacking fault energy (the “chemical misfit” eSFE)
and lattice constant (the “size misfit” eb) calculated in
Ref. [16]. Of the 29 solutes we computed, only six show a
reduction in the prismatic easy fault energy (eE1 < 0) and
these same solutes will lead to significant softening: Ca,
K, Na, Sc, Y and Zr. Li raises the prismatic stacking fault
energy much less than it raises the basal stacking fault en-
ergy; this leads to a reduction in cross-slip stress.
Fig. 2 shows the correlation among the prismatic stacking
fault misfit data, which suggests that the solutes considered
can be well described with only two degrees of freedom.
Strong correlations are seen between eE1 and eH2, eE2 and
eH1, and a weaker correlation between eH1 and eH2. This is
captured in the scaled, uncentered covariance matrix

efpef 0p0
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2
fp

D E
e2

f 0p0

D Er�
:

eE1 eE2 eH1 eH2

eE1 1 �0:272 0:186 0:899

eE2 �0:272 1 0:825 0:092

eH1 0:186 0:825 1 0:429

eH2 0:899 0:092 0:429 1

ð2Þ

Fig. 2 is the data corresponding to the lower triangle of this
matrix. The correlation is important as sites in the pris-
matic screw dislocation core will have a combination
of eE1 and eH2 geometry, or eE2 and eH1 geometry. We



Fig. 1. Prismatic ð0 1 �1 0Þ stacking fault geometries and energies in Mg
from PAW and EAM. The prismatic stacking fault displaced along the
½2 �1 �1 0� direction can be in an (a) easy or (c) hard configuration relative to
(b) bulk depending on the placement of the slip plane (dashed lines). The
easy fault has an unrelaxed planar separation of affiffi

3
p compared with a

2
ffiffi
3
p for

the hard fault. The labels 1 and 2 in the faults correspond to distances
from the fault plane, while orange and blue atoms are on alternating basal
planes. Rotating the view (a)–(c) to the ð2 �1 �1 0Þ plane shows the (d)
differential displacements as arrows corresponding to the total relative
displacement of atomic rows. Black and gray arrows are for the easy fault,
and white and gray arrows are for the hard fault; this corresponds to the
differential displacements in Fig. 3. Finally, the (e) generalized stacking
fault energy for each fault shows no stable point in the displaced direction,
with a fault energy of 218 mJ m�2 for the easy fault and 472 mJ m�2 for
the hard fault from PAW, and 183 and 420 mJ m�2 from EAM.
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correlate site energies for different solutes in a prismatic
core with prismatic misfits. The four solutes whose direct
prismatic core interaction is known (K, Na, Sc and Ca)
also show similar correlations to the other solutes.

The strong correlation between different misfits for a
range of solutes is also reflected in the local changes in elec-
tronic structure for Mg without solute substitution. We
computed the projected electronic density of states (DOS)
for Mg atoms in the hexagonal close-packed (hcp) crystal
structure, and in two sites each in the easy and hard pris-
matic stacking faults. For Mg, only s and p contributions
arise; Fig. 4 shows that most of the changes occur near
the Fermi energy EF. To quantitatively compare the four
different possible solute substitutional sites, we compute
the overlap of two DOS differences from the bulk: let
n0(E) be the DOS for the hcp sites, and n1(E) and n2(E)
DOS for two different sites, then the scaled DOS overlap
Nij is:

Nij ¼
R EF

�1ðniðEÞ � n0ðEÞÞðnjðEÞ � n0ðEÞÞdER EF

�1ðniðEÞ � n0ðEÞÞ2 dE �
R EF

�1ðnjðEÞ � n0ðEÞÞ2 dE
h i1=2

ð3Þ
Eq. (3) is computed for s and p densities separately, and
shows a very similar structure to Eq. (2):

N ðsÞ ¼

E1 E2 H1 H2

E1 1 0:618 0:519 0:866

E2 0:618 1 0:866 0:798

H1 0:519 0:866 1 0:628

H2 0:866 0:798 0:628 1

ð4Þ

N ðpÞ ¼

E1 E2 H1 H2

E1 1 �0:128 �0:084 0:916

E2 �0:128 1 0:974 0:001

H1 0:084 0:974 1 0:063

H2 0:916 0:001 0:063 1

ð5Þ

with the strongest similarity in the changes in p density of
states. This is not surprising; the main difference then in the
electronic structure of the stacking fault regions is in the dis-
tortion of p-type angular bonding. This also clearly connects
the different responses of solutes to the bonding environment
before solutes are even introduced into the calculation.

Fig. 3 shows the differential displacements along the
screw direction of the metastable prismatic screw disloca-
tion core and the stable basal screw dislocation core from
DFT; the interaction parameters yi are discussed later.
The prismatic core differential displacements are labeled
whether they correspond to easy or hard prismatic faults,
or are common to both. The differential displacements
are largest for eight core sites, corresponding to two par-
tials: one leading (‘) and the other trailing (t) relative to
the transformation from a basal dislocation core. Number-
ing the sites based on their distance from the center, the 1
and 3 sites have large easy-prismatic displacements relative
to their nearest neighbors (corresponding to eE1), while 2
and 4 sites have large hard-prismatic displacements relative
to their nearest neighbors (corresponding to eH1). Each 1
site neighbors a 2 site across the fault plane, and each 3 site
neighbors a 4 site across the fault plane; hence, the 1 and 3
sites are in the second plane for a hard fault (eH2), and the 2
and 4 sites are in the second plane for an easy fault (eE2).
We require information about both planes in both faults
and due to the strong correlation between fault misfits
(Eq. (2)), we expect to be able to predictively model inter-
action energies with the available data. Unfortunately, due
to the complexity of the local displacements, the most accu-
rate approach is to parametrize an interaction model
based on direct interaction data from Ref. [11]. For the
basal screw dislocation core, the largest differential
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contained in the misfit data.
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displacements correspond to basal slip, with volumetric
strain near the cores [16]; hence, the interaction energy is
modeled from basal stacking fault energy changes eSFE

and size misfit eb. The site interaction energies for the pris-
matic and basal screw dislocation core are included in
Fig. 3, given by Eqs. (8), (9) and (11) derived below.

Fig. 4 shows the local projected DOS for Mg in hcp, in
different prismatic stacking fault sites as well as in the four
different dislocation core environments. From the geome-
try, we expect information from the different fault configu-
rations to be useful, but in addition, we can quantify the
correlation of changes in DOS at the different core sites
to the different prismatic stacking faults. From the geome-
try, we expect sites 1 and 3 to correlate with E1 and H2
faults, and 2 and 4 to correlate with E2 and H1. The
DOS overlaps of Eq. (3) for the core sites are:

N ðsÞ ¼

E1 E2 H1 H2

core 1 0:977 0:678 0:520 0:930

core 2 0:282 0:894 0:707 0:626

core 3 0:963 0:684 0:529 0:918

core 4 0:763 0:950 0:763 0:906

ð6Þ
N ðpÞ ¼

E1 E2 H1 H2

core 1 0:984 �0:011 0:011 0:915

core 2 �0:406 0:950 0:895 �0:259

core 3 0:962 0:087 0:098 0:896

core 4 0:160 0:939 0:897 0:255

ð7Þ

The correlation of changes in density of states is also re-
flected in the interaction model that we fit; these re-
sponses—before the substitution of solutes—provide a
physical basis for our geometric interaction model.

The direct interaction energy data for solutes substituted
into prismatic screw dislocation cores [11] is used to fit a
site energy model that is a linear combination of solute mis-
fit data. Of the six solutes that lead to a decrease in easy
prismatic stacking fault energy, only four—Ca, K, Na
and Sc—do not destabilize the metastable prismatic screw
dislocation core when substituted into the core. The pris-
matic core is only stable for Ca at sites 1, 3 and 4, and
Sc at sites 1, 2 and 3. The direct interaction energies are
Eprism

i ðXÞ for X = Ca, K, Na and Sc. The lack of other sta-
ble prismatic cores with solutes does not mean, however,
that other solutes cannot lead to softening. Rather, it is



Fig. 3. Differential displacement map of the relaxed Mg prismatic (left)
and basal (right) screw dislocation cores from DFT, and corresponding
interaction energy parameters (yi) in meV. Arrows between two rows
shows the differential displacement along the a

3
½2 �1 �1 0� screw axis, up to a

displacement of b/2. For the prismatic core, the arrow color identifies if
the displacement is specific to an easy (black) or hard (white) fault, or both
faults (gray); cf. Fig. 1. For the basal core, the green differential
displacements are for the basal stacking fault and the background color
shows atomic volumetric strain that is compressive (red) or tensile (blue).
The solute interaction is computed at the eight labeled sites as the basal
core transforms into the prismatic core; 1–4 go from the center of the
prismatic core outward, with ‘ for the leading prismatic partial and t for
the trailing prismatic partial. The leading and trailing partial sites are
equal by symmetry. In the basal core, sites 1t and 3t are identical, as are 2t

and 4t. The optimized interaction parameters yi for each site i reflect this;
in addition, the prismatic interaction is weaker further from the core, and
the basal interactions are weaker at the leading sites (away from the basal
core) than the trailing sites (in the basal core). (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 4. Projected electronic density of states (DOS) for hcp Mg, in the four
different prismatic stacking fault sites (E1 and H2, E2 and H1; cf. Fig. 1)
and four prismatic screw dislocation core sites (1 and 3, 2 and 4; cf. Fig. 3).
The dashed lines show the hcp site DOS for comparison with the defect
sites. The common sites are grouped based on the strongest correlation to
show the similarity between the electronic structure in the different defect
sites; this similarity is mirrored in the geometry and solute interactions.
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the energy difference between a solute site in the prismatic
screw dislocation core and the basal core that affects the
double-kink nucleation energy. To compute the energy of
a solute at a site in the prismatic core, we fit a model for
the site energies that is linear in two misfits. As Fig. 2
shows, there is a strong correlation among the misfits,
and so only two misfits should be needed for a predictive
fit. We considered all six possible pairings, and found that
a fit of the energy for solute X to Eprism

i ðXÞ based on eE1 and
eH2

Epr1
i ðXÞ ¼ ypr1:E1

i eE1ðXÞ þ ypr1:H2
i eH2ðXÞ ð8Þ

had the lowest RMS error (9.5 meV), while a fit of the en-
ergy from eE1 and eH1

Epr2
i ðXÞ ¼ ypr2:E1

i eE1ðXÞ þ ypr2:H1
i eH1ðXÞ ð9Þ

had the second lowest error (10.8 meV). Note that while eE1

appears in both fits, the parameters describing the interaction
ypr1:E1

i and ypr2:E1
i in the two fits are different. The performance
of the first fit is initially surprising as eE1 and eH2 are highly
correlated, but the fit takes advantage of the correlation be-
tween eH2 and eH1. While the two possible linear fits are able
to accurately reproduce the direct interaction data, the dif-
ference in Eqs. (8) and (9) for the 25 solutes not in the fit
was significantly larger than the RMS error of 10 meV. To



Table 2
Average and standard deviation of solute interaction energies from basal
to prismatic screw dislocation cores, and unitless analytic strength
parameters. The solute interactions are computed by combining the solute
data from Table 1 with the interaction parameters yi in Fig. 3 and Eq. (12);
the average and standard deviation over the eight core sites are used to
compute strength parameters for the simplified analytic model. Six solutes
have positive Pdk, suggesting softening of cross-slip: Ca, K, Na, Sc, Y and
Zr. Li has a small interaction energy, which makes its prediction less
reliable than the others. Larger ratios v = Pdk/(sath/sw) provide more
reduction in the thermal cross-slip stress [11].

Interaction [meV] Strength parameter

DE dE dE2 þ DE2
� 	1=2

Pdk sath/sw v

Ag 37.4 32.4 49.4 �10.8 4.8 �2.3
Al 54.9 31.5 63.3 �15.4 6.1 �2.5
As 62.7 41.1 75.0 �15.8 7.2 �2.2

Be 45.2 37.2 58.5 �12.2 5.6 �2.2
Bi 45.5 33.9 56.8 �12.8 5.5 �2.3
Ca �64.1 48.1 80.1 80.4 7.7 10.4

Cd 37.5 24.1 44.6 �11.9 4.3 �2.8
Ga 49.2 30.1 57.7 �14.2 5.6 �2.6
Ge 60.6 36.3 70.6 �16.0 6.8 �2.4

Hg 41.8 28.4 50.5 �12.6 4.9 �2.6
In 36.1 22.3 42.5 �11.7 4.1 �2.9
Ir 65.5 57.0 86.8 �13.6 8.4 �1.6

K �47.8 47.0 67.0 54.0 6.5 8.4

Li 0.0 13.2 13.2 0.7 1.3 0.5
Mn 55.3 39.8 68.1 �14.4 6.6 �2.2

Na �22.3 16.0 27.5 13.9 2.7 5.3

Pb 31.2 24.0 39.4 �10.1 3.8 �2.7
Pd 38.5 42.1 57.1 �9.3 5.5 �1.7

Pt 48.3 46.5 67.1 �11.4 6.5 �1.8
Ru 63.8 50.2 81.2 �14.6 7.8 �1.9
Sb 65.6 41.1 77.4 �16.4 7.5 �2.2

Sc �18.5 31.3 36.3 15.3 3.5 4.4

Si 65.2 40.7 76.9 �16.4 7.4 �2.2
Sn 50.1 30.1 58.4 �14.4 5.6 �2.6

Ti 19.2 25.9 32.3 �5.8 3.1 �1.9
Tl 26.8 18.2 32.4 �9.3 3.1 �3.0
Y �65.6 57.2 87.1 97.9 8.4 11.7

Zn 43.1 30.2 52.7 �12.7 5.1 �2.5
Zr �17.2 43.2 46.5 19.7 4.5 4.4
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alleviate this shortcoming, we construct a robust fit: a simul-
taneous fit of Eqs. (8) and (9) constrained to produce similar
prediction variability for all solutes—those included in the
fit, and those not.

Fig. 3 lists the interaction energy data ypr1
i and ypr2

i for
the robust fit of the prismatic screw dislocation core sites
and ybasal

i for the basal screw dislocation core sites. We
use linear least squares optimization of Eqs. (8) and (9)
simultaneously with an additional penalty function to min-
imize the discrepancy between the model predictions for
solutes not in the fit. This gives a mean-squared error
v2

error to minimize against fit data Eprism
i ðXÞ:

v2
error ¼

X
i;X2fit

Eprism
i ðXÞ � Epr1

i ðXÞ
� �2

þ
X

i;X2fit

Eprism
i ðXÞ � Epr2

i ðXÞ
� �2

þ k
X

i;X2all

Epr1
i ðXÞ � Epr2

i ðXÞ
� 	2 ð10Þ

where k is a parameter to be determined. The first two
terms are the fit errors for Eqs. (8) and (9), while the last
term is the prediction error for all solutes estimated as
the difference between the two models. For any value of
k, the optimal pairs of ypr1:E1

i and ypr1:H2
i , and ypr2:E1

i and
ypr2:H1

i can be found. We select k such that the RMS predic-
tion errors match the RMS fit errors; overall, this gives us
an RMS error of 14 meV for all solutes. The site energies—
the average of Eqs. (8) and (9)—can then be used for each
solute to predict changes in the basal-to-prismatic kink en-
ergy after subtracting the basal interaction energy [16]:

Ebasal
i ðXÞ ¼ ybasal:SFE

i eSFEðXÞ þ ybasal:b
i ebðXÞ ð11Þ

and hence, the change in kink formation energy for a solute
X at site i is:

DEiðXÞ ¼
1

2
Epr1

i ðXÞ þ Epr2
i ðXÞ

� 	
� Ebasal

i ðXÞ ð12Þ

with parameters in Fig. 3, and an expected error of 14 meV.
Table 2 shows the interaction statistics and strength

parameters for 29 different substitutional solutes in Mg.
The site energies are used in the double-kink nucleation
and kink-migration interaction model for a random solu-
tion [11]; there, it was also shown that analytic expressions
are possible for the limit of small solute concentration cs.
Briefly, we compute distributions of double-kink nucle-
ation energies and migration barriers in order to obtain
statistical averages for the thermally activated cross-slip
process. The parameters that enter the analytic strengthen-
ing and softening equations are the mean value of interac-
tion DE, the standard deviation dE, and the root mean
squared interaction, ðdE2 þ DE2Þ1=2. From these, the dou-
ble-kink softening potency Pdk is:

P dk ¼
H 0

dk

2Ef

4S

 �

exp � DE

H 0
dk

þ 1

2

dE

H 0
dk


 �2
 !

� 1

" #
ð13Þ
and the athermal linear strengthening is:

sath=s
H ¼ 2ffiffiffiffiffi

ep
p 2Sc

4b3sH
dE2 þ DE2
� 	1=2 ð14Þ

where the kink formation energy Ef = 515 meV, double-
kink formation energy scaled by strain-rate
H 0

dk ¼ 62:5 meV, number of prismatic core sites Sc = 8,
number of kink sites S = 120, Burgers vector
b = 0.319 nm, and prismatic Peierls stress sw = 140 MPa
are all found in Ref. [11]. A positive Pdk is required for
softening to occur, and only six solutes have Pdk > 0: Ca,
K, Na, Sc, Y and Zr. Li has a weak interaction which is
susceptible to numerical errors (see below). For the analytic
model, the cross-slip stress is the maximum of the double-
kink limited stress:
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sdkðcsÞ ¼ sH 1� a0
dk

� 	
1� a0

dk � a0
dkP dkcs

� 	
ð15Þ

where a0
dk ¼ kBT=H 0

dk; and the athermal hardening stress:

saðcsÞ ¼ sathcs: ð16Þ
Both of these limiting forms are plotted as dashed and
dashed-dotted lines in Fig. 5, in addition to the numerical
cross-slip stress predictions.

Fig. 5 shows the predicted cross-slip stress with concen-
tration at different temperatures for the six softening ele-
ments K, Na, Sc, Ca, Y and Zr. The curves are for the
numerical solution of the Orowan equation, with dashed
lines for the analytic approximations for softening and
athermal hardening. All six solutes—including the first
three predicted in Ref. [11]—show softening for low concen-
trations which becomes hardening at higher concentrations;
the range of solute concentration that leads to softening
decreases at higher temperatures. These predictions suggest
possible alloying concentrations that can lead to lower
stress for thermally activated cross-slip, and hence decrease
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Fig. 5. Cross-slip stress with concentration for K, Na, Sc, Ca, Y and Zr from
small additions of attractive solutes increase the double-kink nucleation rate, le
stress sa(cs). The dashed lines show the linear softening analytic approximation
athermal stress. All of these cases show a minimum cross-slip stress for a given
interaction energy calculations [11], and compare well; the last three solute
interactions.
the plastic anisotropy. At 600 K, the cross-slip stress is
4.1 MPa from our model; that cross-slip stress occurs at
533 K for Mg–0.4 at.%K, 560 K for Mg–1.0 at.%Na,
562 K for Mg–0.9 at.%Sc, 513 K for Mg–0.3 at.%Ca,
487 K for Mg–0.3 at.%Y and 565 K for Mg–0.7 at.%Zr.
The predicted softening for Mg–K, Mg–Na and Mg–Sc is
similar to the direct interaction calculation in Ref. [11],
though the concentrations are slightly different. This reduc-
tion in plastic anisotropy is also captured in the ratio of soft-
ening potency to athermal hardening, v; larger v suggests a
larger possible reduction in forming temperature. We expect
all six of these alloys to be formable below 300 �C, with Mg–
Y showing the lowest forming temperature. Note that stud-
ies of Mg–Y alloys at elevated temperatures (550 K) show
increased non-basal dislocation activity [24].

Alloying Mg with Li is difficult to capture accurately
with our model due to the weak interaction; but is
consistent with experimental data on softening [6]. The
average interaction energy predicted is nearly zero, and
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300–700 K. Increasing temperature lowers the pure Mg cross-slip stress;
ading to softening. The lower bound on all of these curves is the athermal

, and the dashed-dotted curves are the linear analytic approximation to the
temperature. The first three solutes were previously predicted from direct
s require the geometric interaction model to predict solute–dislocation
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the standard deviation is 13 meV; unfortunately, this is the
same size as the prediction error. Li has the weakest inter-
action, and is also unusual in that it can produce softening
of cross-slip without reducing the prismatic stacking fault
energy. In this case, Li increases the basal stacking fault
energy significantly more, and so can still reduce the kink
formation energy. The predicted Pdk = 0.7 would be higher
if the site energies are more attractive. We can estimate a
range of possible Pdk (and sath/sw) by assuming that the
errors in four unique site energies are independent and
normally distributed with width 14 meV. If the average site
energy was lowered to �14 meV (from 0 meV) and the
standard deviation increased to (13.22 + 142) = 19.2 meV,
then the softening potency is Pdk = 9.1. Experimental mea-
surements of Mg–7.9 at.%Li show a reduction in cross-slip
stress that is roughly one-half of the pure Mg cross-slip
stress [6]; this corresponds, in the analytic model, to
Pdk = 8.9. Therefore, while our model is not accurate
enough to predict the exact softening potency of Li, our
calculations do not contradict the known softening of Li.
It is worth noting that cs = 0.079 is a “high” concentration
for the analytic softening model, and the numerical soften-
ing curves in Fig. 5 curve down, suggesting that a weaker
interaction energy might still give the requisite softening.
The subject of Mg–Li interactions remains a worthy prob-
lem for future study to predict cross-slip stress for Mg–Li
alloys.

Finally, note that several solutes have negative misfits
while eE1 > 0, and do produce attractive site energies, but
not of sufficient magnitude to induce softening. Table 1
includes many solutes with negative eE2, eH1 or eH2, while
eE1 remains positive. Of these, As, Bi, Ge, Pb, Sb, Si and
Tl are attractive to a prismatic screw dislocation core at
sites 2t and 2‘; and Bi and Pb are attractive at 4t and 4‘.
However, these attractive interactions do not lead to soft-
ening due to the simultaneous attractive interaction at the
basal screw dislocation core site; hence, the overall interac-
tion is positive. In addition, the other prismatic core sites
remain repulsive. This further supports the general conclu-
sion that eE1 is the most important interaction to cause
softening, possibly combined with a repulsive interaction
for the basal screw dislocation core.

4. Conclusions

Our geometric model of solute interaction in a prismatic
screw dislocation core combined with our previous compu-
tational model of basal to prismatic cross-slip above room
temperature [11] and our geometric model of solute inter-
actions with basal dislocations [16] have allowed us to effi-
ciently calculate and predict cross-slip softening and
hardening for 29 Mg binary alloys. From our interaction
data, we predict six binary Mg alloys which soften pris-
matic slip—Ca, K, Na, Sc, Y and Zr—and suggest that
Mg–Li alloys could also have lower cross-slip stress above
room temperature and be formable below 300 �C. We con-
nect the softening of thermal cross-slip primarily to a
reduction in the easy prismatic stacking fault energy,
though other combinations are possible. Our quantitative
model can be used to predict the change in prismatic
cross-slip stress for other solute elements, and this general
approach—from dislocation core geometry predictions to
interaction energy calculation to kink nucleation thermo-
dynamics—can be applied to other systems with thermally
activated slip. We also hope that these predictions lead to
new experimental measurements of cross-slip stress at ele-
vated temperatures in Mg alloys to provide additional val-
idation of our predictions.
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