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Abstract

We develop a first-principles model of thermally activated cross-slip in magnesium in the presence of a random solute distribution.
Electronic structure methods provide data for the interaction of solutes with prismatic dislocation cores and basal dislocation cores.
Direct calculations of interaction energies are possible for solutes – K, Na and Sc – that lower the Mg prismatic stacking fault energy
to improve formability. To connect to thermally activated cross-slip, we build a statistical model for the distribution of activation ener-
gies for double kink nucleation, barriers for kink migration and roughness of the energy landscape to be overcome by an athermal stress.
These distributions are calculated numerically for a range of concentrations, as well as alternate approximate analytic expressions for the
dilute limit. The analytic distributions provide a simplified model for the maximum cross-slip softening for a solute as a function of tem-
perature. The direct interaction calculations predict lowered forming temperatures for Mg–0.7at.%Sc, Mg–0.4at.%K and Mg–0.6at.%Na
of approximately 250 �C.
� 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Magnesium alloys; Dislocations; Plastic deformation; Cross-slip; Density functional theory
1. Introduction

Increased interest in the lightweight structural metal
magnesium [1] as a replacement for aluminum or steels in
automotive applications [2] has focused attention on a vari-
ety of metallurgical issues, including formability. Current
Mg alloys require temperatures near 300 �C for forming
to activate the five independent slip systems required by
the von Mises criterion [3]; this is in part due to the large
anisotropy between basal and prismatic slip [4]. Cross-slip
of a-type dislocations from the easy (0001) basal plane
onto the hard ð01�10Þ prismatic plane requires large stres-
ses or high temperatures. Experimentally, few solutes have
been found to lower the stress for cross-slip: Al and Zn
lower the stress at low (below room) temperatures [5], while
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Li can lower the cross-slip stress in both regimes [6–9]. The
difficulty of performing experiments to measure cross-slip
stresses for alloys – requiring single-crystal samples ori-
ented for prismatic slip – is compounded by the possibility
that, like solid-solution softening in body-centered cubic
alloys [10], it may occur over a limited concentration and
temperature range. Hence, new state-of-the-art first-princi-
ples prediction of solute/dislocation interactions coupled
with predictive computational modeling of thermally acti-
vated cross-slip in the presence of solutes is necessary to
guide the design of new alloys.

Couret and Caillard’s in situ experimental measurements
[11,12] found that at high (above room) temperatures cross-
slip in magnesium is the result of a double-kink nucleation
(also called a “jog-pair” [13]) mechanism. A basal screw dis-
location constricts at kinks of height c and spreads on two
neighboring basal planes [14]. At low (below room) temper-
atures, cross-slip instead occurs by constriction and bowing
rights reserved.
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of a screw dislocation – the Friedel–Escaig mechanism
[15,16]; as we are interested in the problem of forming near
300 �C, we consider only the double-kink nucleation mech-
anism. We model double-kink nucleation by computing the
geometry and formation energy of a single basal-to-
prismatic kink with a validated embedded-atom method
(EAM) potential [17]; together with the Peierls stress, we
accurately reproduce the experimental cross-slip stress over
the 300–700 K temperature range. The starting geometry
and energetics are combined with first-principles modeling
of the changes in energy from basal to prismatic cores
due to substitutional solutes in magnesium. Finally, we
compute – numerically and with an analytic approximation
– the distribution of double-kink activation barriers and
energy barriers for kink migration to predict the stress for
thermally activated cross-slip with solute concentration
and temperature for K, Na and Sc. In order to substitute
solutes directly, we only consider solutes which do not
increase the energy of the prismatic core. Finally, we use
our model with solute data for softening to predict the
maximum possible reduction in forming temperature for a
binary alloy.

2. Computational methodology

To accurately compute the interaction of solutes with
Mg dislocation cores, we use density functional theory with
flexible boundary conditions for a stress-free dislocation
core. Density functional theory calculations are performed
with VASP [18,19], using a plane-wave basis with the projec-
tor-augmented wave (PAW) method [20] and potentials
generated by Kresse [21]. The electronic exchange and cor-
relation effects are described by a generalized gradient
approximation [22], and a plane-wave kinetic energy cutoff
of 273 eV ensures accurate treatment of the potentials. The
electronic configurations of the PAW potentials are Mg:
Fig. 1. Basal and prismatic a-type screw dislocation core geometries. The differ
up to b/4 to show the splitting into partials. The coloring is a linear-interpolati
metastable prismatic core has a small amount of spreading in the prismatic pla
reader is referred to the web version of this article.)
[Ne]3s2, K: [Mg]3p64s1, Na: [Ne]3s1, Sc: [Ar]4s13d2. The
dislocation calculation uses a 1 � 1 � 16 k-point mesh with
a Methfessel–Paxton smearing of 0.5 eV to give an energy
accuracy of 5 meV for bulk Mg. The dislocation geometry
and flexible boundary condition methods [23–25] use a sim-
ilar geometry to previous calculations for basal dislocations
[26] with a reshaped region I for prismatic splitting; we
relax atomic positions until the forces are less than
5 meV/Å, where the lattice Green function is used to dis-
place atoms in the outer regions. To produce a prismatic
screw dislocation, we begin relaxation from the anisotropic
displacement field from two b/2 partial screw dislocations
(for total Burgers vector b ¼ a

3
½2�1�10�) separated by c in

the prismatic plane.
Determining the geometry and formation energy for a

basal to prismatic kink requires a validated classical poten-
tial [17]. The EAM potential, optimized for liquid/solid
interfaces, also accurately reproduces stacking fault ener-
gies and dislocation core geometries compared with density
functional theory calculations [27,28]. The geometry of a
~b ¼ a

3
½2�1�10� kink of height c is computed from a periodic

cylinder with axis N a
3
½2�1�10� þ c½00 01�; this produces a

periodic array of kinks with density N�1. The inner
cylinder radius is 22b plus an outer layer of 5b fixed to
the initial positions from anisotropic elasticity for a mixed
dislocation. The initial geometry relaxes to a metastable
mixed dislocation configuration. To produce a kink, we
(1) apply a small Escaig shear strain of �0.006 between
the a

3
½2�1�10� and a½0 1�10� directions to promote basal

spreading, (2) relax, (3) reverse the strain and (4) relax.
The energy of the configurations varies as a linear function
of N: constant kink energy plus the line energy with N. The
energies of the core cylinder at N = 60, 80, 100, 120 go as
(0.515 + 0.910N) eV, and we identify the single kink forma-
tion energy Ef = 0.515 eV. The core cylinder – where the
total energy becomes linear in radius – is 12.5b; if instead
ential displacement plots (arrows) indicate relative displacement of rows by
on of Nye tensor density, indicating a total displacement of up to b/2. The
ne. (For interpretation of the references to color in this figure legend, the



Fig. 2. The relative energy of a K, Na and Sc solute in a prismatic dislocation core compared with the same site in a basal dislocation core. The change in
energy can promote (negative energies) or prevent (positive energies) the formation of a double kink. The interaction energy of a single solute with a single
dislocation enters into the distribution of double-kink formation energies, kink-migration barrier energies, and athermal kink migration stress.
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the sum is carried out to 22b, the formation energy is
0.510 eV. The EAM potential has a zero-temperature pris-
matic Peierls stress sw = 140 MPa; this is the minimum
stress required for a straight a-type screw dislocation to
glide in the prismatic plane. We validate with the experi-
mental data for cross-slip from 300 to 700 K in Section 3.3.

3. Results

3.1. Prismatic screw dislocation core

Fig. 1 shows the core of a prismatic screw dislocation
from first principles. In Mg, the a-type screw dislocation
splits into partials in the (0001) plane; splitting onto the
ð01�10Þ plane is a metastable higher energy configuration.
The basal stacking fault energy is 34 mJ m�2 compared
with the prismatic stacking fault energy of 218 mJ m�2;
the metastable point for the prismatic stacking fault is
a
6
½11�20� þ 0:065c½00 01�. We identify Sc = 8 sites in the

core with a large screw dislocation content where solutes
may substitute and lower (or raise) the dislocation core
energy. Unlike the basal screw dislocation, there is very lit-
tle volumetric strain and the dislocation core spreads rather
than splitting into partials. Because the prismatic core is
metastable, solutes can destabilize the core; in that case,
relaxation of the geometry will split the dislocation core
Table 1
Direct solute/kink interaction energy statistics and parameters for analytic
approximations. The analytic softening and hardening depend on the
distribution of solute energies around a kink; from these, the (unitless)
solute softening potency Pdk and (unitless) athermal slip prefactor sath/sw

are derived. The ratio of the two factors, v, determines the maximal
amount of softening that is possible in a given alloy; larger v values
indicate more potential softening (cf. Fig. 7). The linear analytic
approximations are reasonable for cs [ 2% (cf. Fig. 6).

Interaction (meV) Strength param.

DE dE dE2 þ DE2
� �1=2

Pdk sath/sw v

K �45.8 44.0 63.5 48.5 6.67 7.27
Na �37.0 22.3 43.2 26.9 4.54 5.93
Sc �19.6 38.1 42.8 18.9 4.50 4.20
on the basal plane. Here we use direct calculation of inter-
action energy for attractive solutes.

3.2. Direct solute/dislocation interaction

Fig. 2 shows the difference in energy for solutes substi-
tuted at sites in a prismatic dislocation core relative to sub-
stitution in a basal dislocation core. Three solutes decrease
the prismatic stacking fault energy in Mg and produce
attractive dislocation interactions: K, Na and Sc. Note that
repulsive interactions are still possible as the same site in
the basal dislocation core can be more attractive than in
the prismatic dislocation core. Of these three solutes, K
has the strongest interaction in both dislocation cores due
to the large size misfit and change in stacking fault energies
(“chemical” misfit [26]). The statistics of the different site
energies – mean site energy over the eight core sites DE
and standard deviation dE – are included in Table 1. These
Fig. 3. Kink geometry from Sun et al. [17] EAM potential. The atom
colors indicate changes in atomic energy relative to bulk Mg. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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parameters enter into the analytic approximation to the
statistical model we derive, and from which we compute
the dimensionless softening parameter Pdk in Section 3.4,
sath/sw in Section 3.5 and their ratio v.

3.3. Kink geometry and enthalpy

Fig. 3 shows the relaxed kink geometry. As kinks are
“decorated” with solutes, we need to know the portion of
the kink that is prismatic; these sites will have their energies
changed by the energy difference between a prismatic and
basal core containing a solute. The kink has a height of
c, and takes 30b to step from one basal plane to a neighbor-
ing basal plane; over that length, 15b is a prismatic core;
hence, for ‘kink = 15, we have S = Sc‘kink = 120 sites which
can be occupied by solute atoms. We consider kinks with
random distributions of solute, and derive the probability
of having a kink with energy E; we then determine the dis-
tribution of double-kink nucleation energies and kink-
migration barriers as well as the athermal stress required
for kink mobility.

Fig. 4 compares the experimentally determined cross-
slip stress for pure Mg [29] with the calculated double-kink
nucleation enthalpy. In a manner similar to Kocks et al.
[30], we expect the double-kink nucleation enthalpy to
follow

H dkðsÞ ¼ 2Ef 1� s
sH

� �1=2
� �

ð1Þ

where Ef is the formation energy of a single kink and sw is
the prismatic Peierls stress; the exponent of 1/2 corre-
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Fig. 4. Cross-slip stress with temperature from experiment and double-
kink nucleation enthalpy value of Eq. (3). The single-kink formation
energy and prismatic Peierls stress are computed directly from the Mg
EAM potential; the Orowan equation determines a cross-slip stress for a
given dislocation density and plastic strain rate. There is a single unknown
parameter mdk, which is determined by a least-squares fit to the
experimental data; simple counting of degrees of freedom suggests an
order of magnitude of �1010 Hz as found in our fit.
sponds to the elastic interaction of two well-separated
kinks [31]. To validate this expression, we use the Orowan
equation to relate the enthalpy to the plastic strain rate _e
for prismatic shear

_e ¼ c
a

� �
b2q?mdke�HdkðsÞ=kBT ð2Þ

where q\ is the dislocation density (taken as 108 cm�2), and
mdk is the double kink nucleation attempt frequency. The
double-kink nucleation (or jog-pair [13]) model for cross-
slip is valid in the “high” (above room temperature) range
[11,12,14], where the stress is low enough for the constric-
tion on the prismatic plane to be limited to the kinks. At
low temperatures, cross-slip occurs through bowing and
this treatment does not apply. The attempt frequency is dif-
ficult to compute accurately; however, it can be estimated
as a typical phonon frequency (�10 THz) divided by �4S

(the number of atoms in two kinks), or instead fit to the
experimental data in the 300–700 K range. A single param-
eter fit with the experimental strain rate _e ¼ 1:66� 10�4 s�1

gives mdk = 15.4 GHz, which is remarkably close to our
simple estimate counting degrees of freedom. With this
one parameter, we are able to reproduce the experimental
cross-slip stress from room temperature up to �400 �C,

sðT Þ ¼ sH 1� kBT

H 0
dk

� 	2

ð3Þ

where

H 0
dk ¼

2Ef

lnðcaq?mdkÞ � ln _e
¼ 62:5 meV ð4Þ

for our dislocation density and strain rate. For notational
convenience, we introduce the parameter adk as

adk ¼ 1� s
sH

� �1=2

; ð5Þ

for pure Mg, a0
dk ¼ kBT =H 0

dk from Eq. (3). The excellent
agreement with both tensile tests and in situ experiments
validates our use of a double-kink nucleation model for
cross-slip above room temperature; it should be noted that
there is marked deviation going to absolute zero as the
mechanism for cross-slip changes.

3.4. Distribution of double-kink nucleation energies

Each nucleated pair of kinks in a solute field requires a
total energy equal to the formation energies plus the
change due to the presence of solutes in the kink; the distri-
bution can be computed numerically. Each kink has
S = 120 sites in the prismatic core of the kink that may
be occupied by solute atoms; we assume that the total
energy change for the kink is the sum of all the individual
energy changes, which are given by the site occupancy
(either 0 or 1) multiplied by the energy of that site. We
assume translational invariance down the length of the
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kink, so that there are only Sc = 8 unique site energies to
consider labeled DEi for i = 1, . . . ,Sc – these are the site
energy changes in Fig. 2. Then, in the kink core, each
row of sites has ni solutes (between 0 and ‘kink = 15), which
contribute energy niDEi; the total occupancy of the S core
sites is n ¼

P
ini and the energy is E ¼

P
iniDEi. Hence, we

can write the number of possible configurations involving
n0 out of S kink core sites occupied with energy change E0

as

gðE0; n0Þ ¼
X‘kink

n1¼0

� � �
X‘kink

nSc¼0

dn;n0
dðE0 � EÞ

Y
i

‘kink

ni

� 	
ð6Þ

where d(E0 � E) is the Dirac delta function, dn;n0
is the Kro-

necker delta and the final term accounts for the multiplicity
of occupancies along each row. For numerical convenience,
we approximate the delta function with a smoothed
Gaussian with width 10 meV. From Eq. (6), the fraction
of double kinks that can form with energy 2Ef + E for a
random solute distribution with concentration cs is
c = 0%
c = 1%
c = 3%
c = 5%
c = 10%
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Fig. 5. Probability distributions for all three processes (double-kink nucleatio
solutes (K, Na and Sc). The probability distributions are determined num
distributions. For “large” solute cs (compared to the inverse of the number o
approximate analytic expressions can be derived.
Gdkð2Ef þ E; csÞ ¼
XS

n¼0

XS

m¼0

cnþm
s ð1� csÞ2S�n�m

�
Z 1

�1
dE0gðE0; nÞgðE � E0;mÞ ð7Þ

Fig. 5 shows the numerical double-kink nucleation energy
distributions for several concentrations. The average nucle-
ation rate for double kinks at stress s and temperature T is

t�1
dk ¼ mdk

Z 1

�1
dEGdkð2Ef þ E; csÞ

� exp � 2Ef þ E
kBT

1� s
sH

� �1=2
� �
 �

ð8Þ

assuming Gdk(2Ef + E, cs) � 0 for E < �2Ef; otherwise the
integral must be split at E = �2Ef.

An analytic approximation can be derived for the dis-
tribution of energies and the average nucleation time.
Eq. (6) (and hence Eq. (7)) can be alternately viewed
as the distribution of the sum of n random variables,
on barrier

K

athermal kink migration

Na

0.2 0.4 0.6
V]

−0.2 −0.1 0 0.1 0.2 0.3
Eath [eV]

Sc

n, thermally activated kink migration and athermal kink migration) and
erically from the solute interaction energies assuming random solute

f available kink sites S�1), the distributions become close to normal, and
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where each variable is the site energy. From the central
limit theorem, this distribution will be normal, with a
mean value of nDE and standard deviation

ffiffiffi
n
p

dE (for
average interaction DE and standard deviation dE; cf.
Table 1),

Gdk
appð2Ef þ E; csÞ ¼

X2S

n¼0

2S

n

� 	
cn

s ð1� csÞ2S�n 1ffiffiffiffiffiffiffiffi
2pn
p

dE

� exp �ðE � nDEÞ2

2ndE2

" # ð9Þ

This form matches the appearance of distributions in
Fig. 5. The analytic expression of Eq. (9) can integrated
in Eq. (8), using b = (kBT)�1 and adk from Eq. (5)

t�1
dk � mdk

X2S

n¼0

2S

n

� 	
cn

s ð1� csÞ2S�n

�
Z 1

�1
dE

exp �badkð2Ef þ EÞ � ðE�nDEÞ2
2ndE2

h i
ffiffiffiffiffiffiffiffi
2pn
p

dE

¼ mdke�badk2Ef

X2S

n¼0

2S

n

� 	
cn

s ð1� csÞ2S�n e�badkDEeðbadkdEÞ2=2
h in

¼ mdke�badk2Ef 1� cs þ cse�badkDEeðbadkdEÞ2=2
n o2S

ð10Þ
where the first term is the nucleation rate in the absence of
solutes and the term in braces is the change in rate due to
solutes.

The analytic rate equation can be simplified to give the
softening stress with concentration in the low concentra-
tion limit. The change in cross-slip stress can be understood
as a change in the stress necessary to have the same nucle-
ation rate at a given temperature in the absence of solutes;
that is, the cross-slip stress s has a corresponding adk such
that

e�ba0
dk

2Ef ¼ e�badk2Ef 1� cs þ cse�badkDEeðbadkdEÞ2=2
n o2S

ð11Þ

where a0
dk ¼ kBT=H 0

dk. For small cs, dadk/dcs is

ebðadk�a0
dk
Þ2Ef=ð2SÞ ¼ 1� cs þ cse�badkDEeðbadkdEÞ2=2

1þ b2Ef

2S ðadk � a0
dkÞ � 1� cs þ cse�ba0

dk
DEeðba0

dk
dEÞ2=2

dadk

dcs
� 2S

b2Ef
exp � DE

H0
dk

þ 1
2

dE
H0

dk

� �2
� 	

� 1


 � ð12Þ

Finally, as s = sw(1 � adk)2, the change in cross-slip stress
is

ds
dcs

¼ �sH2ð1� adkÞ
dadk

dcs

¼ �sHð1� a0
dkÞa0

dk

� H 0
dk

2Ef

4S
� 	

exp � DE

H 0
dk

þ 1

2

dE

H 0
dk

� 	2
 !

� 1

" #

� �sHð1� a0
dkÞa0

dk � P dk ð13Þ
where Pdk is the unitless “softening potency” (cf. Table 1).
Note that Pdk > 0 requires DE < 1

2
H 0

dkðdE=H 0
dkÞ

2, so that
solutes with repulsive interactions can soften cross-slip pro-
vided sufficient attractive sites are available.

3.5. Distribution of kink migration energy barriers

Solutes “roughen” the energy landscape for kinks and
provide two barriers to the motion of kinks: a minimum
(athermal) stress required for kinks to migrate preferentially
down the dislocation line and the energy barrier over the
length of a kink [32]. Solutes provide local changes in energy
as a kink moves over a single Burgers vector; a minimum
stress sa(cs) is necessary to overcome this short-range change
in energy. This is given by the average roughness of the
energy landscape: the energy changes as Sc sites with solutes
“leave” the kink and another Sc sites “enter” the kink; the
energy change for solutes entering is +DEi, and is �DEi for
those leaving. If the width of the solute interaction is approx-
imated as a Gaussian with area 4b2, the stress to overcome
should go as

ffiffiffiffiffiffiffi
2=e

p
� ðenergy differenceÞ=4b3. Analytically,

we consider a distribution of energy differences as the sum
of n random variables for the energies; however, both
±DEi are equally likely, so the mean is 0 and standard devi-
ation dE2 þ DE2

� �1=2
. The average energy difference is sym-

metric around n = Sc; hence, the standard deviation of our
normal distribution for n = 0, . . . ,Sc is

ffiffiffi
n
p

dE2 þ DE2
� �1=2

and for n = Sc, . . . , 2Sc it is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sc � n
p

dE2 þ DE2
� �1=2

. From
this, we can approximate the average absolute energy change
jDEj as the kink moves by one lattice spacing,

jDEj ¼
XSc

n¼0

2Sc

n

� 	
cn

s ð1� csÞ2Sc�n ffiffiffi
n
p

"

þ
X2Sc

n¼Scþ1

2Sc

n

� 	
cn

s ð1� csÞ2Sc�n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S � n
p

# ffiffiffi
2

p

r
dE2 þ DE2
� �1=2

�
ffiffiffi
2

p

r
ð2ScÞcs dE2 þ DE2

� �1=2

ð14Þ

and then the athermal stress is

saðcsÞ ¼
ffiffiffi
2

e

r
jDEj
4b3
� 2ffiffiffiffiffi

ep
p 2Sc

4b3
ðdE2 þ DE2Þ1=2cs � sathcs

ð15Þ
where the last expression is a simple analytic model in the
limit of low concentration. The numerical distribution of
energies is the athermal distribution in Fig. 5. In addition
to this athermal stress, there are energy barriers as a kink
moves by its length ‘kink due to solute occupancy changes.
For a random distribution of solutes at concentration cs,
the fraction of energy barriers E is

GkmðE; csÞ ¼
XS

n¼0

XS

m¼0

cnþm
s ð1� csÞ2S�n�m

�
Z 1

�1
dE0gðE0; nÞgðE þ E0;mÞ: ð16Þ



5658 J.A. Yasi et al. / Acta Materialia 59 (2011) 5652–5660
Note the sign change for g(E + E0, m) compared with Eq.
(7). The enthalpy barrier to escape an energy well E > 0
is (assuming a Gaussian of width 2‘kinkb and kink height
h = c)

E 1� 2‘kinkb2hffiffiffiffiffiffiffi
2=e

p s� saðcsÞ
E

" #3=2

ð17Þ

for s > sa(cs), from [32]. Define

Es ¼ ðs� saðcsÞÞ
2‘kinkb2ffiffiffiffiffiffiffi

2=e
p ð18Þ

then the time needed to overcome all barriers along the dis-
location line is

tkm ¼ m�1
dk

Z Es

�1
dEGkmðE; csÞ

�

þ
Z 1

Es

dEGkmðE; csÞ exp
E

kBT
1� Es

E


 �3=2
 !)

ð19Þ

Note that tkm is finite only when s > sa(cs).
There is a minimum solute concentration – and hence

athermal stress – necessary for thermally activated kink
migration to affect the cross-slip stress. Eq. (16) is a distribu-
tion of the sum of n random energies; however, as solutes
enter and leave the kink, our possible energies are ±DEi

for a distribution with mean 0 and standard deviation
dE2 þ DE2
� �1=2

as with the athermal barrier. Due to symme-
try around n = S, the standard deviation of our normal dis-
tribution for n0 = 0, . . . ,S is

ffiffiffi
n
p ðdE2 þ DE2Þ1=2 and for
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Fig. 6. Cross-slip stress with concentration for K, Na and Sc between 300 and
additions of attractive solutes increase the double-kink nucleation rate, leading
only at higher concentrations does thermally activated kink migration need to
show the linear softening analytic approximation, and the dashed-dotted curv
show a minimum cross-slip stress for a given temperature, and the concentrat
This allows us to identify an “equivalent temperature”: the lowest temperature
higher temperature. Hence, mechanical forming of these binary alloys can be d
tuned.
n = S, . . . , 2S it is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S � n
p

dE2 þ DE2
� �1=2

. From this, we
approximate Gkm(E, cs) as normal with mean 0 and variance

hE2ikm ¼
XS

n¼0

2S

n

� 	
cn

s ð1� csÞ2S�nnþ
X2S
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� 	
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s ð1� csÞ2S�nð2S � nÞ
" #

� dE2 þ DE2
� �

� ð2SÞcs dE2 þ DE2
� �

ð20Þ

where the approximation has less than 1% error for
cs [ 45% with S = 120. Hence, the standard deviation is
�

ffiffiffiffiffiffi
2S
p

dE2 þ DE2
� �1=2

c1=2
s . With this approximation, the

stress necessary for thermally activated kink migration to
require a larger stress than athermal kink migration is
when t�1

km at s = sa(cs) is slower than required by the Oro-
wan equation: _e > caq?t�1

km (cf. Eq. (2)). At the athermal
stress, there is no reduction in enthalpy for E > 0, and so

tkmmdk ¼
1

2
þ
Z 1

0

dEGkmðE; csÞebE

� 1

2
þ
Z 1

0

dE
exp bE � E2= 2hE2ikm

 �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2phE2ikm

q
� exp

1

2
b2ð2SÞ dE2 þ DE2

� �
cs


 �
ð21Þ

where the first approximation is the use of a normal distri-
bution and the second is valid when the exponential term is
larger than 1. Then, the minimum concentration cmin

s is
such that _e ¼ caq?t�1

km; above this concentration, thermally
activated kink migration will be required. Then

1
2
b2ð2SÞ dE2 þ DE2

� �
cmin

s ¼ ln caq?mdk

_e

� �
cmin

s ¼ ðkBT Þ2

dE2þDE2ð Þ
2Ef

H0
dk

S
:

ð22Þ
al approx.

4 5 6 7

 Na)
0 1 2 3 4 5 6 7

cs (at.% Sc)

0

10

20

30

40

50

60

700 K. Increasing temperature lowers the pure Mg cross-slip stress; small
to softening. The lower bound for all curves is the athermal stress sa(cs);
be activated to achieve the required plastic strain rate. The dashed lines

es are the linear analytic approximation to the athermal stress. All cases
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where the binary alloy has the same cross-slip stress as pure Mg has at a
one at a lower temperature, provided the solute concentration is properly
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We rewrite this in terms of the minimum value of athermal
stress as sa(cs) � sathcs,

sa
min � sathcmin

s ¼
ðkBT Þ2 dE2 þ DE2

� ��1=2ffiffiffiffiffi
ep
p

b3‘kink

2Ef

H 0
dk

: ð23Þ

If saðcsÞ < sa
min, then thermally activated kink migration will

lead to further strengthening. For the solutes we consider
here (cf. Table 1 and Fig. 6), sa

min is J 15 MPa at 300 K
and J 40 MPa at 600 K; hence, thermally activated kink
migration only limits softening outside of the stress and tem-
perature range of interest. Above cmin

s , thermally activated
kink migration controls cross-slip. The integral in Eq. (19)
can be computed in closed form with the approximation

GkmðE; csÞ � expð�E2=ð2hE2ikmÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2phE2ikm

q
from Eq. (20) and with
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ffiffiffi
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3
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1� 3
2

Es
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ffiffiffi
3
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8<
:

ð24Þ

The closed-form expression for Eq. (19) is unwieldy, and
omitted for clarity.

3.6. Prediction of cross-slip stress with concentration and

temperature

Fig. 6 shows the predicted cross-slip stress with
concentration and temperature predicted by our numerical
solution of the Orowan equation, and analytic approxima-
tions for softening and athermal hardening. The Orowan
equation, Eq. (2), is modified for the two thermally acti-
vated cross-slip processes as

_e ¼ c
a

� �
b2q? t�1

dk þ t�1
km

� ��1 ð25Þ

This relates the plastic strain rate to the time to nucleate a
pair of double kinks and migrate the length of the disloca-
tion line. The analytic curves are for double-kink
nucleation and athermal hardening, both of which are
approximately linear. For all solutes, the analytic approxi-
mations are reasonable at lower cs, with more significant
deviations at higher concentrations. All three solutes show
softening for low concentrations which becomes hardening
at higher concentrations; the range of solute concentration
that leads to softening decreases at higher temperatures.
These predictions suggest possible alloying concentrations
that can lead to lower stress for thermally activated
cross-slip, and hence decrease the plastic anisotropy. At
600 K, the cross-slip stress is 4.1 MPa from our model; that
cross-slip stress occurs at 545 K for Mg–0.4at.%K, 560 K
for Mg–0.6at.%Na and 565 K for Mg–0.7at.%Sc.

We derive approximate analytic expressions for the
dilute concentration limit for alloy design. The optimal sol-
ute concentration copt

s occurs when the minimum stress for
double-kink nucleation matches the athermal stress; hence,
sHð1� a0
dkÞð1� a0

dk � a0
dkP dkcopt

s Þ ¼ sathcopt
s

ð1� a0
dkÞ

2 � ð1� a0
dkÞa0

dkP dkcopt
s ¼

sath

sH copt
s

ð1�a0
dk
Þ2

ð1�a0
dk
Þa0

dk
P dkþsath=sH

¼ copt
s

ð26Þ

and then the cross-slip stress is sathcopt
s . Finally, the cross-

slip stress for pure Mg at one temperature can now be
achieved at a minimum “equivalent temperature” in an al-
loy. The pure Mg forming temperature Tform is written as
a0

dk ¼ kBT form=H 0
dk, and the minimum equivalent tempera-

ture Tminimum as adk ¼ kBT minimum=H 0
dk; then,

sHð1� a0
dkÞ

2 ¼ ð1�adkÞ2sath

ð1�adkÞadkP dkþsath=sH

1�adk

1�a0
dk

� �2

� 1


 �
¼ P dk

sath=sH ð1� adkÞadk

ð27Þ

Define v = Pdk/(sath/sw), the unitless ratio of softening po-
tency to athermal hardening; the higher this parameter, the
more the forming temperature of the alloy can be lowered.
The solution to the quadratic formula in Eq. (27) is

1� adk ¼
1
2
vð1� a0

dkÞ
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
ðvð1� a0

dkÞ
2Þ2 þ ð1� a0

dkÞ
2 þ vð1� a0

dkÞ
4

q
1þ vð1� a0

dkÞ
2

ð28Þ

This is plotted in Fig. 7 for a variety of v values. Compared
to our numerical values, the analytic approximation gives
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equivalent 600 K forming temperatures of 530 K for Mg–
K, 543 K for Mg–Na and 560 K for Mg–Sc. Note that,
for Tform = 600 K and Tminimum = 300 K (room tempera-
ture forming), v = 43.3, which would be an attractive inter-
action to a kink of at least � 4H 0

dk ¼ 250 meV.

4. Conclusions

Our first-principles calculations of solute interaction
with prismatic and basal dislocations combined with our
computational model of basal to prismatic cross-slip above
room temperature allows us to make the first prediction of
cross-slip softening of Mg in three binary alloys with lower
forming temperatures. This model accounts for the random
distribution of solutes in a dislocation core with different
possible energies, and the direct calculations can be used
above the dilute concentration limit. At the same time,
an approximate analytic model connects average solute
interaction energies to the dilute limit for near-quantitative
predictions of cross-slip softening and to determine the
required interaction energies that lead to softening. This
predicts possible formable Mg alloys and sets the stage
for future work covering a wider range of solutes; more-
over, the aspects of the approach can be applied to other
thermally activated plastic deformation mechanisms.
Replacing direct calculations of interaction energies with
a geometric model connecting the prismatic dislocation
core to changes in prismatic stacking fault energy could
also treat other substitutional solutes.
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[31] Püschl W. Prog Mater Sci 2002;47:415–61.
[32] Argon AS. Strengthening mechanisms in crystal plastic-

ity. Oxford: Oxford University Press; 2006.
[33] Humphrey W, Dalke A, Schulten K. J Mol Graphics 1996;14:

33–8.

http://dx.doi.org/10.1126/science.1182848
http://dx.doi.org/10.1126/science.1182848
http://dx.doi.org/10.1016/j.ijplas.2004.05.018
http://dx.doi.org/10.1016/j.ijplas.2004.05.018
http://dx.doi.org/10.1103/PhysRevB.73.024116
http://dx.doi.org/10.1080/01418619808214240
http://dx.doi.org/10.1103/PhysRevB.78.014110
http://dx.doi.org/10.1103/PhysRevB.78.014110
http://dx.doi.org/10.1016/j.actamat.2010.06.045
http://dx.doi.org/10.1088/0965-0393/17/5/055012
http://dx.doi.org/10.1088/0965-0393/17/5/055012
http://dx.doi.org/10.1016/j.actamat.2010.04.022

	Prediction of thermal cross-slip stress in magnesium alloys  from direct first-principles data
	1 Introduction
	2 Computational methodology
	3 Results
	3.1 Prismatic screw dislocation core
	3.2 Direct solute/dislocation interaction
	3.3 Kink geometry and enthalpy
	3.4 Distribution of double-kink nucleation energies
	3.5 Distribution of kink migration energy barriers
	3.6 Prediction of cross-slip stress with concentration and temperature

	4 Conclusions
	Acknowledgements
	References


