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Computing the atomic geometry of lattice defects—e.g., point defects, dislocations, crack tips, surfaces, or
boundaries—requires an accurate coupling of the local deformations to the long-range elastic field. Periodic or
fixed boundary conditions used by classical potentials or density-functional theory may not accurately repro-
duce the correct bulk response to an isolated defect; this is especially true for dislocations. Flexible boundary
conditions have been developed to produce the correct long-range strain field from a defect—effectively
“embedding” a finite-sized defect with infinite bulk response, isolating it from either periodic images or free
surfaces. Flexible boundary conditions require the calculation of the bulk response with the lattice Green
function �LGF�. While the LGF can be computed from the force-constant matrix, the force-constant matrix is
only known to a maximum range. This paper illustrates how to accurately calculate the lattice Green function
and estimate the error using a truncated force-constant matrix combined with knowledge of the long-range
behavior of the lattice Green function. The effective range of deviation of the lattice Green function from the
long-range elastic behavior provides an important length scale in multiscale quasicontinuum and flexible
boundary-condition calculations, and measures the error introduced with periodic-boundary conditions.
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I. INTRODUCTION

Lattice defects—e.g., interstitials, vacancies, dislocations,
crack tips, free surfaces, interfaces, and boundaries—each
play key roles in material properties1 and, in order to under-
stand defects, one must know their geometry. The far-field
geometry for many defects is accurately described by aniso-
tropic elasticity theory.2,3 However, the elastic solution often
diverges near the atomic-scale center of the defect and, in
many cases, the center is difficult to investigate with current
microscopy techniques. This is especially true of disloca-
tions, which control plasticity in metals1 and can severely
limit device utility in semiconductors.4 Only recently has the
geometry and electronic structure of an isolated dislocation
been calculated5–7 despite the rapid advances in computer
hardware and density-functional theory methods. Previous
density-functional theory calculations were limited by the
long-range strain field of a dislocation, which is incommen-
surate with periodic-boundary conditions; hence, only dislo-
cation dipoles8,9 or quadrupoles10,11 had been computed. The
advent of “flexible” or “Green function” boundary
conditions—first conceived by Sinclair et al.,12 later redevel-
oped for crack propagation,13 and for dislocations and dislo-
cation kinks14—made possible the relaxation of the core ge-
ometry of an isolated dislocation. For a review of density-
functional theory methods applied to dislocations, see Ref.
15. Flexible boundary conditions accurately treat the long-
range strain field away from the defect by using the har-
monic ideal lattice response in the form of the lattice Green
function �LGF�. The lattice Green function determines the
relaxed position of an atom, given the force on it and its
neighbors in infinite bulk. Flexible boundary conditions have
been used to model cracks,13,16 dislocations, and kinks in bcc
metals with classical potentials,17,18 cross-slip processes in
fcc metals,19 isolated screw dislocations in bcc metals and

ordered intermetallics with density-functional theory,5–7 and
even vacancies and free surfaces;20 for a review of flexible
boundary-condition approaches to nanomechanics of defects,
see Ref. 21.

Flexible boundary conditions use the perfect lattice Green
function to relax the forces on atoms near a defect by cou-
pling to an infinite bulk; in this way, simulation of a defect
requires only a small number of atoms near the defect geom-
etry while the lattice Green function determines the displace-
ment of bulklike atoms away from the defect. The lattice

Green function G� L�R� −R� �� gives displacements in response
to the Kanzaki forces near the defect,

u��R� �� = − �
R�

G� L�R� − R� ��f��R� � ,

in the harmonic limit.12,14 This gives an accurate treatment of
the long-range stress field of a defect �such as a dislocation�
while using density-functional theory forces close to the de-
fect. Since the perfect lattice Green function has translational
symmetry, it provides the “flexibility” in flexible boundary
conditions: bulk lattice response is simulated without speci-
fying an origin for the lattice. Moreover, using density-
functional theory for the forces and the lattice Green function
ensures accurate coupling of the defect region to infinite bulk
without the mismatch of coupling classical potentials with
density-functional theory.

Flexible boundary conditions are limited by the accuracy
of the lattice Green function. Many closed-form results are
known for the lattice Green functions of cubic lattices with
nearest-neighbor interactions.22,23 While the lattice Green
function is intimately related to the elastic constants and
force-constant matrix of a crystal, it has previously been
computed for realistic potentials from relaxation of atom po-
sitions given an applied force.12 Rao et al.14 employed a
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“direct displacement” technique where separate relaxation
calculations in a two-dimensional �2D� slab are used to nu-
merically evaluate the lattice Green function for short range
while switching to the known long-range behavior of the
elastic Green function �EGF�. Woodward and Rao5 used this
same technique with density-functional theory for Mo, Ta,
and TiAl, and found the lattice Green function matched the
long-range behavior at distances of only 5 Å despite long-
range metallic bonding. However, this technique is depen-
dent on the defect geometry: a lattice Green function com-
puted for a �110�/2 fcc screw dislocation cannot be used for
the fcc edge dislocation with a threading direction of

�11̄2� /2. Moreover, relying on atomic relaxation can be
prone to error in density-functional methods when the ap-
plied forces become small. An accurate and computationally
efficient approach instead relies on the force-constant matrix
and elastic constants, which can be computed using standard
techniques.

What follows is a general and accurate method for the
computation of the lattice Green function applicable for use
in density-functional theory for a variety of defect geom-
etries. In addition, this paper presents and tests an estimate of
the error in the lattice Green function due to the geometry
limitations of periodic-boundary conditions with density-
functional theory. Currently available methods for computing
the force-constant matrix in density-functional theory effec-
tively produce a truncated force-constant matrix, defined out
to an artificial cutoff whether they rely on a finite supercell
or calculated on a discrete k-point grid.24–29 However, the
interactions in density-functional theory have an unknown
range, likely to be larger than the artificial supercell. Com-
puting the lattice Green function requires �1� a computational
algorithm to accurately use the limited force-constant matrix
information and �2� an estimate of the error introduced from
the force-constant matrix limitation.

Section II reviews the lattice harmonic response
functions—the force constant and dynamical matrices, and
lattice Green function—and relation to continuum elasticity
theory. Section III derives the general procedure for accurate
numerical evaluation of the lattice Green function with spe-
cific application for zero-dimensional �0D�, one-dimensional
�1D�, and two-dimensional �2D� defects—point defects, dis-
locations, and boundaries, respectively. Section IV derives an
error estimate for the lattice Green function using only the
force-constant matrix computation from a single supercell
and elastic constants. The error estimate is numerically tested
using a face-centered-cubic lattice with random long-range
interactions and is shown to be accurate even with supercells
far smaller than the interaction range. Finally, Sec. V con-
cludes with discussion of applications to defect calculations
and the inherent length-scales in quasicontinuum methods
used in multiscale applications.

II. HARMONIC LATTICE RESPONSE

When atoms in a crystal are subject to applied or internal
forces, they respond by displacing from their ideal lattice
sites, and conversely, displacement from the ideal lattice sites
produces internal forces on atoms. For small displacements

and forces, atoms respond harmonically with a linear rela-
tionship between displacement and force, given by two dif-
ferent lattice functions: the force-constant matrix/dynamical
matrix, and lattice Green function. These functions are de-
fined and connected to anisotropic elasticity. For simplicity, a
single-atom basis Bravais lattice is assumed; ionic crystals
have additional complexities that are not addressed here.41

The infinite harmonic crystal is well known from classical

and quantum theory.30,31 For lattice sites R� and R� �, the 3

�3 force-constant matrix D� �R� −R� �� determines the force at

R� from displacements at R� �, where

D� ab�R� − R� �� = � �2Utotal

�ua�R� � � ub�R� ��
�

u�=0

.

In addition to translational symmetry, D� ab�R� �=D� ab�−R� �
=D� ab�R� � due to inversion symmetry and independence of

differentiation order, and obeys the sum rule �R�D� �R� �=0. The
method of long waves30 connects the force-constant matrix
and the elastic constants Cabcd,

− �
R�

D� ab�R� �RcRd = V�Cacbd + Cadbc� , �1�

where V is the volume of the unit cell. The static lattice

Green function G� L�R� −R� �� determines the displacement at R�

in response to a force at R� �; it obeys similar symmetries to

the force-constant matrix: G� ab
L �R� �=G� ab

L �−R� �=G� ab
L �R� �. The

long-range behavior of the lattice Green function is given by
the elastic Green function from continuum theory. The elas-
tic Green function G� E�x�� satisfies the partial differential
equation2,3

�
abc

Ciabc�a�bG� cj
E �x�� = − �ij��x�� , �2�

where ��x�� is the Dirac delta function. The lattice Green

function matches the elastic Green function as R� →�, re-
gardless of how long ranged the force-constant matrix is.
Lastly, the lattice Green function and force-constant matrix
are �pseudo�inverses of each other,

�
R��

D� �R� − R� ��G� L�R� � − R� �� = 1��R� − R� �� , �3�

where � is the Kronecker delta function. The force-constant
matrix is singular due to the sum rule and hence cannot be
directly inverted with Eq. �3� to compute the lattice Green
function.

The lattice Green function can be modified for different
bulk boundary conditions. In infinite bulk, G� L is called the
three-dimensional �3D� lattice Green function and it is useful
for computation of point defects. If the forces and displace-
ments have periodicity along a lattice vector t�, such as in a
single straight dislocation defect, the 2D lattice Green func-

tion is used: �nG� L�R� +nt��. Finally, if forces and displace-
ments have periodicity along two lattice vectors t�1 and t�2,
such as in surfaces, grain boundaries, and interfaces, the 1D
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lattice Green function is used: �mnG� L�R� +mt�1+nt�2�. Despite
the simple summations used to define the 2D and 1D lattice
Green functions from the 3D, the sums converge condition-
ally. The “dimensionality” of the lattice Green functions re-

fer to the degrees of freedom for the lattice vector R� ; G� L

remains a 3�3 matrix in all cases. The dimensionality of the
defect �0, 1, or 2� plus the dimensionality of the lattice Green
function �3, 2, or 1� sums to three.

The computation of the lattice Green function is more
tractable in reciprocal space. The lattice functions can be
written as periodic functions of vectors k� in the Brillouin
zone �BZ� of reciprocal space,32

G̃L�k�� = �
R�

eik�·R�G� L�R� � ,

G� L�R� � = V� �
BZ

� d3k

�2��3e−ik�·R�G̃L�k�� ,

and a similar relationship between the force-constant matrix

D� and the dynamical matrix D̃. In reciprocal space, the in-

verse equation Eq. �3� simplifies to G̃L�k��D̃�k��=1 for all k�.
The singularity of D� is reduced to the gamma point k� =0,

where D̃�0�=0; for all other points, G̃L�k��= �D̃�k���−1. The
inverse exists for crystal structures without unstable phonon
modes. The acoustic modes in the dynamical matrix produce

a second-order pole in G̃L at the gamma point; this pole
corresponds to the elastic Green function.

Accurate computation of lattice Green function relies on
accurate computation of the force-constant matrix. While
computing the force-constant matrix is straightforward for
interactions with a finite cutoff, it is difficult for density-
functional theory methods, which may have long-range in-
teractions �such as Friedel oscillations�. Two methods have
emerged: direct force24–27 and linear response.28,29 The direct
force method computes the reciprocal-space dynamical ma-
trix on a discrete grid of k points in the BZ; this is equivalent
to folding the force-constant matrix into an artificial super-
cell. Linear response can be used to compute the dynamical
matrix at any arbitrary k point; however, finite computational
time means that it, too, can only compute the dynamical
matrix for a finite set of k points.

The effect of using a spatially truncated force-constant
matrix to compute the lattice Green function needs to be
evaluated. This is done with the elastic constants, which can
be found separately by computing the response of a periodic
cell to uniform strains. Equation �1� relates the elastic con-
stants to the force-constant matrix. This provides an estimate
for the deviation of the long-range elastic Green function
from the lattice Green function, which in turn gives an error
estimate for using the truncated force-constant matrix. More
importantly, this estimate does not rely on a convergence test
computation comparing increasingly larger supercells.

III. COMPUTATION OF LATTICE GREEN FUNCTION

The procedure for numerical computation of the lattice
Green function in real space separates the Fourier transform

into pieces, which can be inverse Fourier transformed accu-
rately. The straightforward approach would be to discrete
inverse Fourier transform the inverse of the dynamical ma-
trix; however, this transform converges very slowly with in-
creased grid spacing due to the second-order pole at the
gamma point. The inversion of the dynamical matrix to com-
pute the lattice Green function is still best performed in re-
ciprocal space where the large R behavior is exactly con-
tained in the pole at k=0. To accurately compute the lattice
Green function requires an analytic treatment of the small k
behavior separated from the rest of the Brillouin zone.

The separation of the lattice Green function allows a dis-
crete inverse Fourier transform to converge by analytically
treating the second-order pole and discontinuity at k=0. The

second-order pole and discontinuity in G̃L comes from the

expansion of D̃�k�� for small k,

D̃�k�� = �
R�

D� �R� �exp�ik� · R� �

� �
R�

D� �R� �	1 −
1

2
�k� · R� �2 +

1

24
�k� · R� �4
 . �4�

The expansion is rewritten in terms of two functions of dif-

ferent order in k: k2�̃�2��k̂�−k4�̃�4��k̂�, where k̂=k� /k. The first

function �̃�2��k̂� relates to the elastic constants by Eq. �1�,

�
cd

kckd�−
1

2�
R�

D� ab�R� �RcRd� = V�
cd

kcCcabdkd,

which gives �̃�2��k̂�=V�k̂Ck̂�, where C is the fourth-rank

elastic stiffness tensor. The quartic function �̃�4��k̂� is

�̃�4��k�� = �
cdef

kckdkekf�−
1

24�
R�

D� �R� �RcRdReRf� .

The lattice Green function expands for small k as

G̃L�k�� = k−2��̃�2��k̂��−1 + k0��̃�2��k̂��−1�̃�4��k̂���̃�2��k̂��−1

+ O�k2� ,

where

G̃E�k��  k−2��̃�2��k̂��−1 =
1

Vk2 �k̂Ck̂�−1, �5�

and

G̃dc�k��  ��̃�2��k̂��−1�̃�4��k̂���̃�2��k̂��−1

= G̃E�k̂�	−
1

24�
R�

D� �R� ��k̂ · R� �4
G̃E�k̂� . �6�

G̃E is the second-order pole at the gamma point, which is the

Fourier transform of the elastic Green function, while G̃dc

depends only on k̂, gives a discontinuity at the gamma point

�limk�→0 G̃dc�k�� does not exist�. It is important to note that
after subtracting the elastic Green function from the lattice
Green function, a discontinuity is produced at the gamma
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point, which, if not handled before using a discrete inverse
Fourier transform, will lead to slow convergence �albeit not
as slow as the pole�.

This expansion is used to rewrite the Fourier transform of
the lattice Green function in the entire Brillouin zone as three
pieces to be inverse Fourier transformed: the elastic Green
function, discontinuity correction, and semicontinuum func-
tion. Truncating the elastic Green function and discontinuity
correction relies on a continuous and differentiable cut-off
function fcut�k /kmax� with parameter 0���1,

fcut�x� = �
1 :0 	 x � �

3� 1 − x

1 − �
�2

− 2� 1 − x

1 − �
�3

:� 	 x � 1

0 :1 	 x
� , �7�

where kmax is the radius of a sphere inscribed in the Brillouin

zone. While the evaluation of G� L�R� � is independent of the
cut-off function, and hence �, the results shown use �
=1 /2. Then, the lattice Green function for k� in the first Bril-
louin zone is

G̃L�k�� = G̃E�k��fcut�k/kmax� + G̃dc�k��fcut�k/kmax� + ��D̃�k���−1

− �G̃E�k�� + G̃dc�k���fcut�k/kmax�� . �8�

The term in braces is the semicontinuum function G̃sc. It is
the only function that is inverse Fourier transformed using a
discrete numerical mesh; the elastic Green function and dis-
continuity are handled analytically. The elimination of the
second-order pole at the gamma point by using a cut-off
version of the elastic Green function is related to the semi-
continuum method of Tewary and Bullough.33 However,
their semicontinuum approach used a Gaussian cutoff, which
does not vanish at the Brillouin-zone edge and does not treat
the discontinuity produced at the gamma point. Expressions
using a Gaussian cutoff are included in the online supporting
material.42

Figure 1 shows an example of the separation from Eq. �8�

of the lattice Green function into the three terms for a square
lattice. The lattice Green function shown comes from a
square lattice with lattice constant a0=� and nearest-
neighbor interactions; then G̃L�kx ,ky�= �sin2��kx /2�
+sin2��ky /2��−1. The second-order pole at origin is given by
the elastic Green function G̃E�kx ,ky�=4 / ���k��2; it is multi-
plied by the cut-off function with kmax=1 so as to vanish at
the Brillouin-zone edge. Subtracting the pole from the lattice
Green function produces a function with a discontinuity at
the gamma point. The discontinuity at the origin is given by
the discontinuity correction G̃dc�kx ,ky�= �kx

4+ky
4� / �3�k�4�,

which is multiplied by the cut-off function. Note, e.g., that
limk→0 G̃dc�k ,0�= 1

3 � limk→0 G̃dc��2k ,�2k�= 1
6 , and this dis-

continuity only appears after removing the second-order
pole. Subtracting the discontinuity produces the semicon-

tinuum function, G̃sc�kx ,ky�, given by Eq. �8�.
The evaluation of the lattice Green function in real space

is accomplished by inverse Fourier transforming the semi-

continuum function G̃sc, the cut-off elastic Green function

G̃Efcut, and the cut-off discontinuity correction G̃dcfcut. The

semicontinuum function G̃sc�k�� is evaluated on a discrete
k-point grid in the Brillouin zone; inversion of the dynamical
matrix for small k must be handled carefully to avoid nu-
merical noise. A discrete inverse Fourier transform converges

well with grid spacing because G̃sc is smooth throughout the

Brillouin zone. The cut-off elastic Green function G̃Efcut and

discontinuity correction G̃dcfcut are expanded as functions of

k̂ using spherical harmonics or a Fourier series depending on
the dimensionality of the problem. In this form, their inverse
Fourier transforms can be analytically reduced to a one-
dimensional integral of nonsingular functions over a finite
range that is computed numerically to the desired accuracy.
The details of this reduction depends on the periodicity of
the lattice Green function. Table I gives a brief overview of
the results and Table II gives a summary of the equations; the
online supporting material contains full derivations of the
final expressions.42

= + +

lattice GF elastic GF discontinuity
correction

semicontinuum
correction

FIG. 1. �Color online� Separation of lattice Green function for a square lattice in two-dimensional reciprocal space into elastic Green
function, discontinuity correction, and semicontinuum function �note different vertical scales�. The lattice Green function has the periodicity
of the reciprocal lattice and a second-order pole at the gamma point. The elastic Green function scales as k−2 and is cut off to smoothly go
to zero at the Brillouin-zone edges. The removal of the second-order pole creates a discontinuity independent of �k� at the gamma point; the
discontinuity correction removes the discontinuity and smoothly goes to zero at the Brillouin-zone edges. The remaining difference between
the lattice Green function and the first two terms is the semicontinuum function, which is smooth everywhere in the Brillouin zone.
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A. 3D lattice Green function: 0D defects

To facilitate inverse Fourier transformation, the

reciprocal-space elastic Green function G̃E �Eq. �5�� and dis-

continuity correction G̃dc �Eq. �6�� are expanded as a spheri-
cal harmonic series whose coefficients are computed numeri-
cally. The expansions

G̃E�k�� =
1

k2 �
l=0

Lmax

�
m=−l

l

G̃lm
E Ylm�k̂�, G̃dc�k�� = �

l=0

Lmax

�
m=−l

l

G̃lm
dcYlm�k̂� ,

are truncated for l
Lmax. Both G̃E and G̃dc are symmetric
with respect to inversion, and only even l values are nonzero.
The choice of normalized spherical harmonics is given by

Ylm��,�� = eim��2l + 1

4�

�l − m�!
�l + m�!

Pl
m�cos �� ,

for k̂= �sin � cos � , sin � sin � , cos ��, where Pl
m�x� is the as-

sociated Legendre polynomial without the �−1�m phase.34

Given the spherical harmonic series, inverse Fourier
transformation is reduced to a single integral over a finite
range. The inverse Fourier transform integral in spherical
harmonics over the BZ gives

G� E�R� � = �
lm

Lmax

G̃lm
E Ylm�R̂��− 1�l/2 V

4�R
fl

�0��kmaxR� ,

and

G� dc�R� � = �
lm

Lmax

G̃lm
dcYlm�R̂��− 1�l/2 V

4�R3 f l
�2��kmaxR� ,

where f l
�0��x� and f l

�2��x� are integrals over the cut-off func-
tion fcut.

42 As noted in the supporting material, both f l
�0��x�

and f l
�2��x� approach finite values as x→�; hence, G� E�R−1

and G� dc�R−3 for large R. Moreover, f l
�0��x��x1+l and

f0
�2��x��x3+l for small x so the scaling with distance holds

also at R=0, with 1 /kmax as the length scale. These results
are summarized in Table II.

The inverse Fourier transform of the semicontinuum func-

tion G̃sc is performed via a discrete transform on a grid in the
Brillouin zone. There are different techniques for construct-

ing a k-point mesh35,36 but a uniform grid of k� points cen-
tered at the gamma point inside the BZ suffices. The primary
requirement is that each k point lies in the first BZ so that the
points given by �k��kmax form a sphere. The spacing of the
grid is determined by the largest magnitude lattice vector

Rmax in the desired domain of G� L�R� �. To avoid aliasing er-
rors, the grid spacing k must be smaller than 2� /Rmax,
although a smaller spacing is preferable. For large R, substi-
tuting the elastic Green function for the lattice Green func-
tion introduces only small errors, hence reduces the effective
Rmax and k-point mesh that were used. The deviation is esti-
mated in detail in Sec. IV.

B. 2D lattice Green function: 1D defects

The introduction of a threading direction reduces the lat-
tice Green function to lattice points in a two-dimensional
“slab” and modifies the inverse Fourier transformations. The
forces and displacements of atoms around a dislocation line
or a crack tip have a periodicity given by a threading lattice
vector t�. The periodicity is represented in the lattice Green

function by the 2D lattice Green function, �nG� L�R� +nt��. As
with the 3D lattice Green function, evaluation of the 2D
lattice Green function is best performed in Fourier space and
inverse Fourier transforming to real space. Then,

G� L-2D�R� � = �
n=−�

�

G� L-3D�R� + nt��

= �
n=−�

�
V

�2��3 � �
BZ

� d3ke−ik�·R�e−ink�·t�G̃L�k�� .

The infinite summation over n gives a delta function on
exp�ik� · t��−1; when evaluated inside the integral, it produces
�2�� / �t�� and restricts the integration to planes in the BZ that
are perpendicular to t�; hence,

G� L-2D�R� � = �
k���BZ

V

�t��
� �

BZ

d2k�

�2��2e−i�k��+k���·R
�
G̃L�k�� + k��� ,

�9�

TABLE I. Overview of lattice Green function computation for different dimensionality. The dimensionality of the lattice Green function
is determined by the type of defect being simulated: the defect dimensionality plus the lattice Green function dimensionality is three. While
the lattice Green function has the same form in reciprocal space, the periodicity determines the range of Brillouin-zone integration, and the

functions used to expand the k̂ dependence of the elastic Green function and discontinuity correction. The range of BZ integration produces
different large R behavior for both the elastic Green function—also given by elasticity theory—and the discontinuity correction. The

one-dimensional case has no k̂ dependence so there is no angular expansion nor is a discontinuity correction required.

3D 2D 1D

Defect type: �dimensionality� point �0D� dislocation, crack tip �1D� Free-surface, boundary �2D�
Brillouin-zone integration: full BZ plane�s� � to threading direction line�s� � to surface plane

Angular expansion in Brillouin zone: spherical harmonics Ylm��k ,�k� Fourier series in plane ein�k N/A

Large R elastic Green function: R−1 −ln R+R0 R

Large R discontinuity correction: R−3 R−2 N/A
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where the �finite� summation is over k�� =m ·2�t�/ �t��2 �m inte-
ger� inside the BZ and two-dimensional integration is over
k�� inside the BZ perpendicular to t�. Equation �9� still has a

pole in G̃L to contend with but it lies purely in the plane of

k�� =0. Hence, for k���0, the value of G̃L= �D̃�−1 is used and a
discrete inverse Fourier transform is performed. Then, the
remaining difficulty is the 1 /k�

2 pole at the gamma point in
the 2D inverse Fourier transform.

TABLE II. Summary of equations for lattice Green function computation for different dimensionality. The split of the lattice Green
function into three pieces is given for each, along with the angular expansion. The lattice Green function in real space, the limit of large R,
and value at R=0 are also given. The cut-off function fcut and parameter � are defined in Eq. �7�; kmax is the radius of a sphere inscribed in
the BZ. All k� are restricted to be inside the first BZ. The finite BZ summations are done over a grid of Nkpt points. The function �x� is one
for x=0 and zero elsewhere. The integrals over the cut-off function in 3D f l

�0��x� and f l
�2��x�, and 2D Fn

�0��x� and Fn
�2��x� are defined in the

supporting material �Ref. 42�. For the 2D case, the periodicity is defined by a threading lattice vector t� and R� is the magnitude of R�

perpendicular to t�. In the 1D case, the periodicity is defined by two nonparallel lattice vectors t�1 and t�2; R� is the magnitude of R�

perpendicular to the plane of t�1 and t�2.

3D:
G̃E�k�� =

1

k2 �
l even

Lmax

�
m=−l

l

G̃lm
E Ylm�k̂�, G̃dc�k�� = �

l even

Lmax

�
m=−l

l

G̃lm
dcYlm�k̂�, G̃sc�k�� = �D̃�k���−1 − �G̃E�k�� + G̃dc�k���fcut�k/kmax�

G� L�R� � =
V

4� �
lm

Lmax

�− 1�l/2	 1

R
G̃lm

E f l
�0��kmaxR� +

1

R3G̃lm
dc f l

�2��kmaxR�
Ylm�R̂� +
1

Nkpt
�

k��BZ

e−ik�·R�G̃sc�k��

G� L�R� → �� =
V

4� �
lm

Lmax

�− 1�l/2	 1

R
G̃lm

E +
l�l + 1�

R3 G̃lm
dc
� �

k odd

l

k

�
k even

l

k�Ylm�R̂� + O�R−5�

G� L�R� = 0� = G̃00
E Vkmax

2�2 	1 −
1 − �

2

 + G̃00

dc Vkmax
3

2�2 	1

3
−

�1 − ���2�2 + 5� + 8�
30


 +
1

Nkpt
�

k��BZ

G̃sc�k��

2D:
G̃E�k��� =

1

k�
2 �

n even

Nmax

G̃n
Eein�k, G̃dc�k��� = �

n even

Nmax

G̃n
dcein�k, G̃sc�k�� = �D̃�k���−1 − �G̃E�k�� + G̃dc�k���fcut�k/kmax��k� · t��

G� L�R� � =
V

2��t�� �
n even

Nmax

�− 1�n/2	G̃n
EFn

�0��kmaxR�� +
1

R�
2 G̃n

dcFn
�2��kmaxR��
ein�R +

1

Nkpt
�

k��+k���BZ

e−i�k��+k���·R�G̃sc�k�� + k���

G� L�R� → �� =
V

2��t��
	− G̃0

E ln R� + �
n=2

Nmax

�− 1�n/2�1

n
G̃n

E +
n

R�
2 G̃n

dc�ein�R
 + O�R�
−4�

G� L�R� = 0� = G̃0
E V

2��t��
	ln�kmax� + �� − ln 2� +

6�2�3 − ��ln � − �1 − ���5�2 − 22� + 5�
6�1 − ��3 
 + G̃0

dcVkmax
2

2��t��
	1

2
−

�1 − ���3� + 7�
20



+

1

Nkpt
�

k��+k���BZ

e−ik��·R
�
G̃sc�k�� + k���

1D:
G̃E�k��� =

1

k�
2 G̃E, G̃dc�k��� = 0, G̃sc�k�� = �D̃�k���−1 − G̃E�k��fcut�k/kmax��k� · t�1��k� · t�2�

G� L�R� � =
V

�t�1 � t�2�
G̃E	−

�R��
�

Si�kmaxR�� −
cos �kmaxR��

�kmax
+�

�kmax

kmax

dk
cos �kR��

�k2 �fcut�k/kmax� − 1�

+

1

Nkpt
�

k��+k���BZ

e−i�k��+k���·R�G̃sc�k�� + k���

G� L�R� → �� = −
1

2
�R��

VG̃E

�t�1 � t�2�
+ O�R�

−1�

G� L�R� = 0� =
VG̃E

�t�1 � t�2�

3�− 1 + �2 − 2� ln ��
�kmax�1 − ��3 +

1

Nkpt
�

k��+k���BZ

e−ik��·R
�
G̃sc�k�� + k���
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The 2D lattice Green function is split into three contribu-
tions for inverse Fourier transformation: elastic Green func-
tion, discontinuity correction, and semicontinuum function.

The elastic Green function G̃E and discontinuity correction

G̃dc are expanded as a truncated Fourier series in the plane of
k��,

G̃E�k��� =
1

k�
2 �

n=−Nmax

Nmax

G̃n
Eein�k, G̃dc�k��� = �

n=−Nmax

Nmax

G̃n
dcein�k,

where �k is the angle of k�� relative to an �arbitrary� in-plane

reference direction n�� �n�� · t�=0�. Both G̃E and G̃dc have in-
version symmetry so only even n values are nonzero. Note

that G̃E�k�� and G̃dc�k�� are the same functions that appear in
the 3D lattice Green function �given by Eqs. �5� and �6��; for
the 2D lattice Green function, they are only evaluated in the
plane through the gamma point.

Given the Fourier series, inverse Fourier transformation
reduces to a single integral over a finite range. The k���0
terms of Eq. �9� have no singularities so they can be evalu-
ated numerically using a discrete inverse Fourier transform
with a discrete grid for k��, where construction of this grid is
described below. Hence, the elastic Green function and dis-
continuity corrections are only evaluated for k�� =0. In the

plane, our polar coordinates are R�=�R2− �R� · t��2 / t2, which

is the magnitude of R� perpendicular to t�, and �R, which is the

in-plane angle of R� relative to n�� ��R=arccos��n�� ·R� � /
R�n���. Then the inverse Fourier transform integral over the
BZ is

G� E�R� � = �
n=−Nmax

Nmax

G̃n
Eein�R�− 1�n/2 V

�t��2�
Fn

�0��kmaxR�� ,

and

G� dc�R� � = �
n=−Nmax

Nmax

G̃n
dcein�R�− 1�n/2 V

�t��2�R�
2

Fn
�2��kmaxR�� ,

where Fn
�0��x� and Fn

�2��x� are integrals over the cut-off func-
tion fcut.

42 As noted in the supporting material, both Fn
�0��x�

and Fl
�2��x� approach finite values as x→�; hence, G� E�R�

0

and G� dc�R�
−2 for large R�. Moreover, Fn

�0��x��xn and
Fn

�2��x��x2+n for small x; the corresponding limit for F0
�0�

gives ln kmax. As a final note, the n=0 function goes as
ln�R�� for large R�, recovering the well-known result that
the isotropic elastic Green function is logarithmic in dis-
tance. These results are summarized in Table II.

The inverse Fourier transform of the semicontinuum func-

tion G̃sc is performed via a discrete transform on a grid lying
on planes in the Brillouin zone. The planes are specified by
the threading direction in the lattice t�; to form a planar grid
requires two in-plane lattice vectors n�� and m� �. All three
vectors are mutually perpendicular although not normalized.
The N�M grid is the combination of k�� and k�� with

k��t,n,m� =
2�t�

�t��2
t +

2�n��

�n���2
n

N
+

2�m� �

�m� ��2
m

M
,

where t, n, and m are integers that range over the interior of
the BZ. The integers N and M specify the in-plane grid spac-
ing, and must be chosen sufficiently large to remove aliasing
effects out to Rmax. As for the 3D lattice Green function, the
deviation between the 2D lattice Green function and 2D elas-
tic Green function decreases with distance, thus requiring the
computation of the lattice Green function out to a fixed dis-
tance dependent on required accuracy.

C. 1D lattice Green function: 2D defects

The introduction of an infinite surface or boundary re-
duces the lattice Green function to lattice points in a one-
dimensional column and modifies the inverse Fourier trans-
formations. The forces and displacements of atoms away
from a boundary—be it a free surface, grain boundary, or
interface—have a periodicity given by two nonparallel lattice
vectors t�1 and t�2 lying in the boundary plane. The periodicity
is represented in the lattice Green function by the 1D lattice

Green function, �mnG� L�R� +mt�1+nt�2�. As with the 3D and 2D
lattice Green functions, evaluation of the 1D lattice Green
function is best performed in Fourier space and inverse Fou-
rier transforming to real space. Then,

G� L-1D�R� � = �
n1,n2=−�

�

G� L-3D�R� + n1t�1 + n2t�2�

= �
n1,n2=−�

�
V

�2��3��
BZ

� d3ke−ik�·R�e−in1k�·t�1−in2k�·t�2G̃L�k��

= �
k�plane�BZ

V

�t�1 � t�2�
�
BZ

dk�

2�
e−i�k��+k�plane�·R�G̃L�k�� + k�plane� ,

�10�

where the �finite� summation is over

k�plane = 2�
�m1t�1 + m2t�2� � �t�1 � t�2�

�t�1 � t�2�2
,

�m1 and m2 integer� which are inside the BZ, and one-
dimensional integration is over k�� that are parallel to t�1� t�2
and is inside the BZ. This is by virtue of the summation over
n1 and n2, similar to the 2D lattice Green function. Equation

�10� still has a pole in G̃L to contend with but it lies purely on
the line where k�plane=0. Hence, for k�plane�0, the value of

G̃L= �D̃�−1 is used and a discrete inverse Fourier transform is
performed. Then, the remaining difficulty is the 1 /k�

2 pole at
the gamma point in the 1D inverse Fourier transform.

The pole at the gamma point in 1D can be split into two
contributions for inverse Fourier transformation: elastic
Green function and the semicontinuum function. For one-
dimensional variation along k��, the elastic Green function is
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G̃E�k��� =
1

k�
2 G̃E,

where the factor G̃E= �̃�2��t�1� t�2 / �t�1� t�2�� depends on t�1� t�2
and there is no remaining discontinuity at the gamma point.
Thus, the semicontinuum function no longer vanishes at the
gamma point but instead smoothly approaches a constant
value. Thus, the only piece to be treated analytically is the
1 /k�

2 pole at the origin.
The inverse Fourier transformation of the elastic Green

function requires the evaluation of a single integral. The elas-
tic Green function in real space is

G� E�R� ��k�� = 0� =
V

�t�1 � t�2�
�

BZ

dk�

2�
e−ik��·R�G̃E�k���fcut�k/kmax�

=
V

�t�1 � t�2�
G̃E�

−kmax

kmax dk

2�
e−ikR�k−2fcut�k/kmax� ,

where R� is the �positive� magnitude of R� perpendicular to
the plane given by t�1 and t�2. The integral over the cut-off
function is evaluated in the online supporting material.42 The
limiting behavior of G� E��R�� from elasticity theory is re-
covered. These results are summarized in Table II.

The inverse Fourier transform of the semicontinuum func-

tion G̃sc is performed via a discrete transform on a grid in
lines through the Brillouin zone. The grid spacing along the
line must be sufficiently small to remove aliasing effects. As
with the 3D and 2D lattice Green functions, the deviation
between the 1D lattice and elastic Green functions decreases
with distance. Thus, the elastic Green function may be sub-
stituted at a fixed distance and require the computation of the
full lattice Green function for a finite set of points.

IV. ERROR ESTIMATION FOR LGF

Table II shows that as R becomes larger, the lattice Green
function asymptotically matches the elastic Green function;
this matching provides the basis for an error estimate of the
lattice Green function. The elastic Green function can be
computed knowing only the elastic constants; in turn, the
elastic constants can be computed even for interactions with-
out a fixed cutoff such as density-functional theory. Hence,
while the force-constant matrix computational may induce an
artificial cutoff, the asymptotic limit of the lattice Green
function is known exactly. Then an estimate of the error in
the lattice Green function can be determined by estimating
the deviation between the elastic Green function and lattice
Green function. Surprisingly, an accurate estimate can be ob-
tained using the elastic constants and the force-constant ma-
trix can be obtained from an artificially truncated supercell
even if the true force-constant matrix has nonzero elements
outside the supercell. Hence, a single approximate computa-
tion of the force-constant matrix in a supercell together with
the elastic constants provides an estimate of the accuracy of
the supercell computation. This is derived in the online sup-
porting material42 and shown below.

A. Derivation

The asymptotic connection between the lattice Green
function and the elastic Green function can be understood by
viewing the lattice Green function as a “numerical grid” so-
lution to the elastic Green function differential equation, as
in Fig. 2. The mapping of a continuum differential equation
onto a discrete grid with a lattice equation is a well-known
method for the numerical solution of multidimensional par-
tial differential equations.37 The �partial� derivatives can be
approximated using finite differences on the grid. As the grid
spacing becomes small compared to the length scale of varia-
tion of the solution, the continuum solution is recovered.
Moreover, this mapping can be reversed: given a lattice
equation, taking the limit of zero grid spacing can recover
the continuum partial differential equation. In the case of the
lattice Green function, the grid is defined by the crystalline
lattice, the lattice equation by Eq. �3�, and the corresponding
continuum differential equation by Eq. �2�.

The analogy of the numerical solution of partial differen-
tial equations provides the basic idea for the estimation of
the deviation between the lattice Green function and elastic
Green function. In finite difference applications, an estimate
of the discretization error can be determined by substituting
the true continuum solution into the discrete equation and
using Taylor series to approximate the deviation.37 For the
lattice Green function equation, it is the elastic Green func-
tion that is an approximation but the methodology for error
estimation is identical, and provides the deviation between
the lattice and elastic Green functions.

The relative deviation of the lattice Green function from
the elastic Green function can be extracted using the real-
space lattice Green function equation �Eq. �3��. Define the
relative deviation ��GF�R�, for R
0, as

G� L�R� � = G� E�R� ��1 + ��GF�R�� ,

and substituting into Eq. �3� for R
0 to get

(b)(a)

FIG. 2. �Color online� Connection of solution of continuum dif-
ferential equation mapped onto a lattice equation. The continuum
differential equation that defines the solution on the left can be
discretized by introducing a grid and approximating derivatives
with finite differences over the grid to produce a lattice equation. In
the limit that the grid spacing becomes small compared to the
length scale of variation of the solution, the discrete approximation
matches the continuum solution. This mapping can also be reversed
by starting with a grid and a lattice equation, and then taking the
limit of zero grid spacing to produce a corresponding continuum
differential equation.
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�
x�

G� E�R� − x��D� �x�� + �
x�

G� E�R� − x����GF�R� − x��D� �x�� = 0 .

The detailed derivation of an approximate solution for the
relative error appears in the supporting material,42

��GF�R� �
2V

R2 �C�R��D� �0��−1 +
10

3R2

G̃00
dc�R�

G̃00
E

, �11�

where V�Cab�R�=�xx
2D� ab�x��−��x��	Rx2D� ab�x�� is the error in

elastic constants from truncating the force constants at R and

G̃00
dc�R� is the spherically averaged discontinuity correction

with a truncated force-constant matrix. The first term domi-
nates when R is small compared to the true range of the
interaction �“region 1”� and the second term dominates when
R becomes comparable to the interaction range �“region 2”�.
Overall, the relative error estimate scales as R−2. The main
feature of Eq. �11� is that the two pieces of the estimate can
be determined using a single supercell calculation even if the
force-constant matrix lacks a finite interaction cutoff. The
cutoff is given by either the size of the supercell in a direct
force computation or the inverse q-point grid spacing in a
linear-response calculation. For direct force, it is assumed
that the effect of folding the force-constant matrix into the
supercell is approximately equivalent to truncating it outside
the supercell.

B. Numerical example of error estimate: FCC lattice

While Eq. �11� has the advantage of being computable for
long-ranged force-constant matrices, it is not clear if too
much accuracy has been lost in the series of approximations
so a numerical example highlights the range of applicability.
A series of pseudorandom long-range force-constant matri-
ces are generated on a face-centered-cubic lattice with char-
acteristics related to real material systems, and for each, the
lattice Green function, relative deviation to the elastic Green
function, and region 1 and 2 estimates are computed.

The force-constant matrices are generated using D� �R�
�sin��R /a0�R−4, cutoff at 15a0 with lattice constant a0=1.
The functional form is chosen to provide a long-range inter-
action whose falloff is still fast enough to produce finite elas-
tic constants in Eq. �1�. The sin��R /a0� functional form pro-
duces a Friedel-like oscillation, as might be expected in a
metallic system. The force-constant matrix elements at each
site are pseudorandom numbers from a Gaussian distribution
with mean of zero and standard deviation sin��R /a0�R−4.
The force-constant matrix is symmetrized using the cubic
point group. The elastic constants and phonons are com-
puted; if there are unstable phonons or the elastic anisotropy
is greater than three, the force-constant matrix is rejected.
100 random, stable, long-range face-centered-cubic force-
constant matrices are generated in this manner; for each, the
lattice and elastic Green functions along with the relative
deviation are generated. The force-constant matrix is “folded
down” into supercells from 2�2�2 to 14�14�14 in order
to compute the region 1 and 2 estimates in Eq. �11�.

Figure 3 shows the true deviation and estimates from our
test case for both a single example and the average results

from the 100 force-constant matrices. As expected from the
derivation, the region 1 estimate dominates for small R and
falls off as the supercell becomes large enough to accurately
produce the elastic constants. The region 2 estimate becomes
important for large R, capturing the long-range effect from
the discontinuity correction. What is especially encouraging
is that the error estimate is accurate even for small supercells
such as 2�2�2, where the supercell force-constant matrix
calculation is clearly inaccurate due to the long range. This is
perhaps the most impressive feature of Eq. �11�: Even when
the force-constant matrix calculation comes from a small su-
percell, the known elastic constants can still provide an ac-
curate error estimate without requiring comparisons to larger
supercells. Hence, a supercell-size effect estimate on the lat-
tice Green function computation is provided from a single
supercell force-constant matrix computation.

V. DISCUSSION

The deviation between the lattice Green function and elas-
tic Green function in Eq. �11� can be described by a single
length scale lelas that characterizes the recovery of continuum
elastic behavior from atomistic lattice behavior: ��GF�R�
��lelas /R�2. This length scale determines the range where the
lattice Green function should be computed in lieu of the
elastic Green function. For example, if the magnitude of the
largest lattice vector Rmax is greater than 10lelas, the lattice

10−2 10−2

10−1 10−1

100 100

re
la

tiv
e

di
ff

er
en

ce
ε

(R
)

true |EGF-LGF| / |EGF|
total deviation estimate
region 1 estimate
region 2 estimate

4 8 12
R (a

0
)

10−2 10−2

10−1 10−1

100 100

(a) single test case

(b) 100 run average

FIG. 3. �Color online� Relative deviation between EGF and
LGF for face-centered-cubic test case. The points give the deviation
between the lattice Green function, computed with the full force-
constant matrix, and the elastic Green function. The region 1 and 2
estimates are computed using the folded force-constant matrix in
cubic supercells, and combined, as in Eq. �11�, to produce the total
deviation estimate. �a� Single random force-constant matrix shows
an individual example of error estimation. �b� 100 different random
force-constant matrices were computed along with their associated
LGFs. The average deviation over the ensemble average shows ac-
curate computation of the error even for the case of small supercells
�2�2�2� with the long-range force-constant matrix �cutoff at
15a0�.
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Green function can be computed for lattice vectors �R� �
�10lelas and the elastic Green function used for the remain-
der while introducing a total error of 1%. This choice can
greatly speed the computation of the lattice Green function
for large simulations by �1� limiting the k-point grid size and
�2� restricting the set of points over which the full lattice
Green function must be computed.

The length scale lelas is also a fundamental length scale for
quasicontinuum38 and flexible boundary condition
methods13,14 where it determines the range at which the re-
laxation response using elastic finite elements or the bulk
continuum is accurate compared to atomistic response. This
length is not necessarily the same as the interaction force
cutoff: it may be larger or smaller. For example, the region 2
estimate of deviation for an isotropic nearest-neighbor inter-
action gives lelas=�1 /6Rnn�0.4Rnn, which suggests transi-
tioning from atomistic to finite elements at twice the interac-
tion cutoff produces errors on the order of 4% in position. On
the other extreme, density-functional theory calculations in
metals have shown surprisingly small lelas, considering the
known long-range interactions in metallic systems.5 It is the
small value of lelas that has allowed the accurate calculation
of isolated dislocations using flexible boundary-condition
methods in density-functional theory. Knowledge of lelas is
essential to constructing accurate computational cells that are
large enough to produce accurate response but do not waste
computational resources treating interactions that can be re-
placed with elastic response.

This paper presents an accurate computational algorithm
for the lattice Green function from limited force-constant
matrix information together with the elastic constants. In
conjunction, an accurate error estimate using the limited
force-constant matrix computable from a single supercell
computation allows measurement of the supercell-size effect.
The error estimate produces a length scale lelas, which char-
acterizes the crossover from atomistic harmonic response to
continuum elastic response. The algorithm for lattice Green
function computation together with the determination of
crossover length scale has already allowed the accurate com-
putation of single extended dislocation defects using density-
functional theory.5–7,39,40 The approach can also be utilized to
implement flexible boundary-condition methods for point de-
fects, crack opening, tip propagation, and surfaces and
boundaries coupled with density-functional theory, providing
chemically accurate interactions coupled with correct treat-
ment of the long-range elastic response of extended defects.
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