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Flexible boundary condition methods couple an isolated defect to a harmonically responding medium
through the bulk lattice Green’s function; in the case of an interface, interfacial lattice Green’s functions. We
present a method to compute the lattice Green’s function for a planar interface with arbitrary atomic interac-
tions suited for the study of line defect/interface interactions. The interface is coupled to two different semi-
infinite bulk regions, and the Green’s function for interface-interface, bulk-interface, and bulk-bulk interactions
are computed individually. The elastic bicrystal Green’s function and the bulk lattice Green’s function give the
interaction between bulk regions. We make use of partial Fourier transforms to treat in-plane periodicity. Direct
inversion of the force constant matrix in the partial Fourier space provides the interface terms. The general
method makes no assumptions about the atomic interactions or crystal orientations. We simulate a screw

dislocation interacting with a �101̄2� twin boundary in Ti using flexible boundary conditions and compare with
traditional fixed boundary conditions results. Flexible boundary conditions give the correct core structure with
significantly less atoms required to relax by energy minimization. This highlights the applicability of flexible
boundary conditions methods to modeling defect/interface interactions by ab initio methods.
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I. INTRODUCTION

Accurate atomic scale studies of lattice defect geometry
are the key to any modeling of their effects on material prop-
erties. However, the long-range �elastic� displacement field
of isolated defects, e.g., dislocations, is incompatible with
periodic boundary conditions typically used in computer ato-
mistic simulations. Fixed boundary conditions require simu-
lation sizes large enough for the elastic solution to be
accurate—a size typically beyond even modern density-
functional theory methods. Flexible boundary condition
methods avoid these issues by relaxing the atoms away from
the defect core through lattice Green’s function �LGF� as if
they are embedded in an infinite harmonic medium. Hence,
the atomic scale geometry of the defect core is coupled to the
long-range strain field in the surrounding medium. Sinclair
et al.1 introduced flexible boundary conditions for studying
defects in bulk materials such as cracks,2,3 dislocations,4–7

vacancies with classical potentials, and isolated screw or
edge dislocations with density-functional theory.8–11 Flexible
boundary conditions use the perfect lattice Green’s function
corresponding to the specific geometry of the problem. For
instance, line defects in the presence of interfaces require the
interfacial lattice Green’s function �ILGF�. Line defects in
interfaces affect the mechanical properties of composites,
two-phase or polycrystalline materials, where heterophase or
homophase interfaces interact with defects. In the case of
defects in interfaces, it is important to note that the perfect
bulk lattice is being altered in two steps: first the interface is
constructed and then the defect is introduced. The first part
of this paper deals with computing the lattice Green’s func-
tion for the interface geometry without any defects. Tewary
and Thomson12 proposed a Dyson-equation calculation of the
interfacial lattice Green’s function suitable for materials with
short-range atomic interactions and simple crystal structures.
We present a general—for all types of interactions and inter-
face orientations—accurate method to compute the interfa-

cial lattice Green’s function. The second part of this paper
shows that once the Green’s function for the perfect �i.e.,
without defects� interface geometry is obtained, it can be
used in a flexible boundary conditions framework to relax
the core geometry of an isolated defect in the interface. This
method is suited to use in density functional theory and is
specifically applicable to studies of line defects interactions
with planar interfaces such as disconnections in interfaces
and dislocation or crack tips interacting with grain bound-
aries and two-phase interfaces. Section II reviews the har-
monic response functions: the force constant matrix and the
lattice Green’s function. Section III explains the general pro-
cedure for evaluation of the interfacial lattice Green’s func-
tion and section IV applies the method to modeling the in-

teraction of a screw dislocation with Ti �101̄2� twin
boundary. The end result is a computationally tractable, gen-
eral approach usable for studies of defects in interfaces.

II. HARMONIC RESPONSE

Harmonic response is characterized by a linear relation-
ship between forces and displacements.13 Lattice Green’s
function G� �R� ,R� �� relates the displacement u��R� � of atom R� to
the internal forces f��R� �� on another atom R� � of the crystal
through

u��R� � = − �
R��

G� �R� ,R� ��f��R� �� . �1�

Conversely, the forces on an atom can be expressed in terms
of displacements through the force constant matrix D� �R� ,R� ��
by

f��R� � = − �
R��

D� �R� ,R� ��u��R� �� . �2�

The static LGF can also be viewed as the zero frequency
limit of the dynamical Green’s function.14 Translational in-
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variance of an infinite crystal makes G� and D� functions of
the relative positions of the atoms. Substituting Eq. �2� into
Eq. �1� gives �R��G� �R� −R� ��D� �R� ��=1��R� �, where ��R� � is the
Kronecker delta function. A constant shift in atom positions
does not produce internal forces; hence, �R�D� �R� �=0, and so
G� �R� � is the pseudoinverse of D� �R� � in the subspace without
uniform displacements or forces. In a bulk geometry, the
Fourier transform of the lattice functions are defined as

G> �k�� = �
R�

eik�·R�G� �R� �, G� �R� � = �
BZ

d3k

�2��3e−ik�·R�G> �k��

where the summation is over lattice points.15 In reciprocal
space, the matrix inverse relation G> �k��D> �k��=1 and the sum
rule D> �0��=0 require that G> �k�� has a pole at the � point.
While computation of the force constant matrix D� �R� �—and
subsequently D> �k��—is straightforward, G� �R� � can not be
computed directly due to its long-range behavior. Instead, we
invert D> �k�� to get G> �k�� and then perform an inverse Fourier
transform. Convergence of the inverse Fourier transform re-
quires an analytical treatment of the pole at the � point.16,17

In an interface geometry, translational invariance is broken in
the direction perpendicular to the interface; we use Fourier
transforms in the interface plane only. This produces an in-
finite dimensional dynamical matrix that can not be simply
inverted but requires a more complex computational ap-
proach.

III. COMPUTATION OF LATTICE GREEN’S FUNCTION
FOR A PLANAR INTERFACE

In our approach, the interface is coupled to two different
semi-infinite bulk regions. The Green’s function for

interface-interface, bulk-interface, and bulk-bulk interactions
are computed separately. We approximate the long-range
bulk-bulk interaction of the discrete ILGF with the con-
tinuum bicrystal Green’s function based on the assumption
that just like the perfect bulk LGF asymptotically matches
the continuum Green’s function,18 the interfacial LGF
matches the continuum “interfacial” Green’s function. The
ILGF for atoms in the same bulk regions is given by the bulk
LGF of each region plus an elastic correction caused by the
interface. The Green’s functions for the interface are ob-
tained from direct inversion of the force constant matrix us-
ing a partial Fourier transform to account for translational
invariance.

Figure 1�a� shows two lattices, � and � joined at a planar
interface. Each set of vectors a1�

�,�, a2�
�,�, and a3�

�,� give the
periodic directions in their corresponding lattice. We intro-
duce integer matrices M� � and M� � and deformation operators
F� � and F� � so that

F� �,��a1�
�,�,a2�

�,�,a3�
�,��M� �,� = �T1

� �,�,T2
� �,�,T3

� �,�� �3�

to define the supercell. We use T1
� �=T1

� �= t�1 and
T2
� �=T2

� �= t�2 as nonparallel vectors to define the interface
plane, where t�2 will be the periodic threading vector for a
line defect in the interface. The combined lattice has transla-
tional invariance in t�1 and t�2 directions in the interface plane
while the periodicity is broken in directions outside the
plane. Introducing a threading direction reduces the problem
to two dimensions �2D� �i.e., plain strain or antiplane strain
conditions�. We confine our calculations to the plane or-
thogonal to t�2 and define the Cartesian coordinate x̂, ŷ, and ẑ
so that t�1 · x̂=a0, t�2= �t�2�ŷ, and ẑ= x̂� ŷ. Note that, in general,
a0� �t�1� because t�1 and t�2 can be nonorthogonal. Specifically,

FIG. 1. �Color online� �a� Bicrystal � and �, �b� separation into bulk and interface regions, and �c� the Ti �101̄2� twin boundary. Two
different lattices, � and � are connected through a planar interface. The unit cells of � and � are given by a1�

�,�, a2�
�,�, and a3�

�,�—all of
which must be lattice vectors in � and �. The combined lattice has the periodicity of the interface in t�1 and t�2 directions. Introducing a line
defect threading direction t�2 reduces the problem to 2D in the plane normal to t�2. In �b�, the crystal is divided into two semi-infinite bulk
regions, bulk � and bulk � symbolized by �+� and �−�, respectively, coupled with an interface region �I�. The bulk regions are far from and
affected only through an elastic effect by the interface. The force constant matrix between atom pairs in the bulk is not affected by the

interface. The remaining layers are included in �I�. �c� shows the periodicity vectors for the Ti �101̄2� twin boundary. The interface is defined
by t�1=�3a2+c2x̂ and t�2=aŷ, where a and c are the hcp unit cell parameters in Ti for both � and �. � is the reflection of � about the interface
plane.
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the lattice positions, R� =xx̂+zẑ and the Fourier vectors,
k� =kxx̂+kzẑ, will be 2D vectors through out this paper and

D� ����R� ,R� �� = D� ����x − x�;z,z��

with � and �� identifying the xyz components of the second
rank tensor D� in Cartesian coordinates. We index atoms in
our computational cell with integer l at position �xl ,zl�; due
to periodicity in the x̂ direction, each atom also occurs at xl
+na0x̂ for integer values of n. The partial Fourier transform
and inverse Fourier transform are

D> �l,��l��kx� = �
n=−	

	

eikx�xl−xl�+na0�D� ����xl − xl� + na0;zl,zl�� ,

D� ����xl − xl� + na0;zl,zl��

=
a0

2�
�

−�/a0

�/a0

e−ikx�xl−xl�+na0�D> �l,��l��kx�dkx �4�

for all pairs l , l�. Note that “l” indexes layers of atoms with
particular z values. There may be two different layers that
have equal z :zl=zl� while l� l�. D> �kx� is infinite dimensional
due to infinite values of l.

To avoid the inversion of infinite dimensional D> �kx�, the
geometry is divided into two semi-infinite bulk regions
coupled with an interface region. Figure 1�b� shows the sche-
matic divisions of the regions in an interface geometry con-
sisting of lattices � and �. The “bulk” regions represent lay-
ers of atoms that are far from and affected only through an
elastic field by the interface. The atomic scale interactions
between atom pairs are as if they were in their corresponding
bulk geometry. Bulk � and bulk � are symbolized by �+� and
�−� in our notation. The remaining layers, affected by the
reconstructions near the interface, are included in the “inter-
face” region �I�. We define the interface region as atoms
where the force constant matrix differs from those in the bulk
lattice. For specific geometries, additional bulk layers may
be included in the interface to insure a smooth transition
between the regions. We block partition the infinite dimen-
sional D> �l,��l��kx� and G> �l,��l��kx� based on the atom region
�+, −, or I� of indices l as

D> �kx� = 	D> II�kx� D> I−�kx� D> I+�kx�
D> −I�kx� D> −−�kx� D> −+�kx�
D> +I�kx� D> +−�kx� D> ++�kx�


 , �5�

where l
 l+ belong to �+� region, l� l− belong to �−� region
and the finite-dimensional region is �I�. D> �kx� and G> �kx� are
Hermitian and satisfy

�
��l�

D> �l,��l��kx�G> ��l�,��l��kx� = �����ll�. �6�

We construct D> �kx� by direct calculation of
D� ����xl−xl�+na0 ;zl ,zl�� followed by a partial Fourier trans-
form according to Eq. �4� and block partitioning as in Eq.
�5�. Note that due to the finite number of interface layers and
decay of the force constant matrix, the infinite dimensional
nonzero sections of D> �kx� consists of −−, −+, and ++ inter-

actions �bulk-like regions with themselves� which we explic-
itly avoid in our approach.

The infinite dimensional blocks of G> �kx� are known from
bicrystal elastic and bulk lattice calculations. The distance
between + and − is large enough for the elastic Green’s func-
tion to be applicable; the real space solution of G� −+ is calcu-
lated from the bicrystal elastic Green’s function in both plane
strain and antiplane conditions proposed by Tewary et al.19

We partially Fourier transform the real space solution by a
continuum version of Eq. �4�

G> �l,��l�
−+ �kx� = �

−	

	

G� ���
−+ �x;zl,zl��e

ikxxdx . �7�

G> +− is the conjugate transpose of G> −+ due to G> �kx� being
Hermitian. The functional form of G� −+�x ;zl ,zl�� consists of
real parts of ln�x+ pq

�zl+ pq�
� zl��, where pq

� and pq�
� are the

complex roots of the sextic equation of anisotropic elasticity
for bicrystal �� and q ,q�=1,2 in plain strain and 1 in anti-

plane conditions.19 We rewrite ln�x+�l,l�
qq�+ il,l�

qq�� with

�l,l�
qq� = R�pq

��zl + R�pq�
� �zl�, l,l�

qq� = I�pq
��zl + I�pq�

� �zl�.

The Green’s function in real space is the real part of the
complex logarithm with the form

G� ���
−+ �x;zl,zl�� = �

q,q�

a����
qq� ln��x + �l,l�

qq��2 + �l,l�
qq��2�

+ b����
qq� arctan� l,l�

qq�

x + �l,l�
qq�� , �8�

where a����
qq� and b����

qq� are real valued coefficients of the term
qq�. Eq. �8� is obtained by rewriting Eq. �60� in Ref. 19. The
partial Fourier transform is

G> �l,��l�
−+ �kx� = −

�

�t�2��kx�
�
q,q�

2a����
qq� e−�

l,l�
qq�kx�e−i�

l,l�
qq�kx

+ ib����
qq� kx

�kx�
e−�

l,l�
qq�kx�e−i�

l,l�
qq�kx �9�

with a first order pole at kx=0. The 1 / �t�2� prefactor is re-
quired for the elastic and lattice Green’s functions to have
consistent units of �length2 /energy�. We separate the pole
from the remainder of the Green’s function

G> �l,��l�
−+ �kx� =

G>̂ ���
−+

�kx�
+ G>̌ �l,��l�

−+ �kx� . �10�

The pole with a constant coefficient G>̂ ���
−+ =− �

�t�2��q,q�a����
qq� will

be treated analytically while the nonsingular remainder

G>̌ �l,��l�
−+ �kx�, will be treated numerically.
The G> −−�kx� and G> ++�kx� blocks in Eqn. �5� are obtained

from the bulk lattice Green’s function of � and � lattices
plus an elastic term due to the presence of the interface. The
full Fourier transform of the bulk LGF G> ���k�� is the inverse

LATTICE GREEN’s FUNCTION FOR CRYSTALS… PHYSICAL REVIEW B 82, 064115 �2010�

064115-3



of the bulk dynamical matrix from Sec. II. The partial in-
verse Fourier transform gives the Green’s function in terms
of kx and atom indices

G> �l,��l�
�� �kx� =

1

ABZ
�

ki�kx�

kf�kx�

G> ���
�� �k��e−ikz�zl−zl��dkz �11�

for k� = �kxx̂ ,kzẑ� in the Brillouin zone �BZ�, ABZ the area of
the BZ and ki�kx� and kf�kx� showing the initial and final
values of kz at each kx. G> ���

�� �k�� has a second order pole at
k=�kx

2+kz
2=0 which is responsible for the logarithmic long

range behavior of LGF in real space. The LGF in reciprocal
space is

G> ���
�� �k�� =

G>̂ ���
�� �k̂�

kx
2 + kz

2 fc�k� + G>̌ ���
�� �k�� ,

where G>̂ �� is the k̂ direction-dependent elastic Green’s func-
tion and fc�k� is a cutoff function that vanishes smoothly at

the edges of the BZ. In anisotropic cases, G>̂ ���k̂� is repre-

sented by a Fourier series expansion as G>̂ ���
�� �k̂�

=�n=0
NmaxG>̂ ���

��,nein�k, where �k is the angle of k� relative to an
arbitrary in-plane direction and the truncation Nmax is suffi-
ciently large.16 The integrand in Eq. �11� is not singular for
kx�0 however the k2 pole in G> ���k�� results in a pole of
order �kx� in G> �l,��l�

�� �kx�. To treat the small kx behavior ana-
lytically, we integrate Eq. �11� as four terms

�
ki�kx�

kf�kx�

G> ���
�� �k��e−ikz�zl−zl��dkz

= �
ki�kx�

kf�kx�

G> ���
�� �k���e−ikz�zl−zl�� − 1�dkz

+ �
ki�kx�

kf�kx�

G> ���
�� �k�� −

G>̂ ���
��,0

kx
2 + kz

2 fc�kx,kz�dkz

+ �
ki�kx�

kf�kx� G>̂ ���
��,0

kx
2 + kz

2 �fc�kx,kz� − 1�dkz + �
ki�kx�

kf�kx� G>̂ ���
��,0

kx
2 + kz

2dkz

�12�

where G>̂ ���
��,0 is the n=0 coefficient in Fourier series expan-

sion of G>̂ ���
�� �k̂�. The first three terms in Eq. �12� are evalu-

ated numerically while the last integral is

�
ki�kx�

kf�kx� G>̂ ���
��,0

kx
2 + kz

2dkz

=
�G>̂ ���

��,0

�kx�
+ G>̂ ���

��,0

� arctan�kf�kx�/kx� − arctan�ki�kx�/kx�
kx

−
�

�kx�
� ,

�13�

where
�G>̂ ���

��,0

�kx�
is the pole and the remaining terms are added to

the numerically evaluated part. Note that the direction depen-

dent terms in G>̂ ���
�� �k̂� expansion do not contribute to the pole

in kx and are included in the second intergal of Eq. �12�. We
add an elastic correction term to G> ���

�� �kx� due to the interface
obtained from Eq. �59� in Ref. 19. Combining Eqs. �10�,
�12�, and �13� produces

G> �l,�l�
��� �kx� =

G>̂ ���
���

�kx�
+ G>̌ �l,�l�

��� �kx� . �14�

Equation �5� has unknown blocks G> II�kx�, G> I��kx�.
Direct substitution of the block partitions gives

G> I��kx� = − �D> II�kx��−1 �
��=�

D> I���kx�G> ����kx� , �15�

G> II�kx� = �D> II�kx��−1

+ �
���=�

�D> II�kx��−1D> I��kx�G> ����kx�D> ��I�kx��D> II�kx��−1.

�16�

Note that by choosing the appropriate set of independent
equations we manage to avoid the calculation of the
infinite dimensional D> ����kx�. The finite range of
D> I��kx� means that only a finite subset of atoms in each semi-
infinite � region are considered for G> ����kx�. To treat the
poles in G> II�kx� and G> I��kx� analytically, we use a small kx

expansion of D> �kx�=D>̂ +D>̌ �kx� derived from Eqn. �4� where

D>̌ �kx�=D> �1�kx+O�kx
2�. Therefore, for small kx

�D> �kx��−1 = �D>̂ + D>̌ �kx��−1

= D>̂ −1�I + D>̌ �kx�D>̂ −1�−1

= D>̂ −1 − kxD>̂
−1D> �1�D>̂ −1 + O�kx

2� . �17�

Using the small kx expansions for the bulk Green’s functions
with Eqs. �15� and �16� gives

G> I��kx� =
1

�kx�
G>̂ I� + G>̌ I��kx� and G> II�kx� =

1

�kx�
G>̂ II + G>̌ II�kx� ,

�18�

where

G>̂ I� = − �D>̂ II�−1 �
��=�

D>̂ I��G>̂ ���

and

G>̂ II = �D>̂ II�−1 + �
�,��=�

�D>̂ II�−1D>̂ I�G>̂ ���D>̂ ��I�D>̂ II�−1

are the constant coefficients of the pole and G>̌ I��kx� and

G>̌ II�kx� include the remaining nonsingular terms. G>̌ II�kx� and

G>̌ I��kx� have a cusp approaching kx=0 and the value at
kx=0 is
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G>̌ I��0� = − �D>̂ II�−1 �
��=�

D>̂ I��G>̌ ����0� , �19�

G>̌ II�0� = �D>̂ II�−1 + �
�,��=�

�D>̂ II�−1D>̂ I�G>̌ ����0�D>̂ ��I�D>̂ II�−1,

�20�

where G>̌ ����0� is calculated in Appendix. To ensure a smooth
transition between interface and bulk regions, we compare
the pole terms and the cusps for atom indices at the boundary
between the regions �i.e l+ and l−�. Labeling l� as �=� or �I�
does not change the material response. Specifically we
should have

G>̂ �l�,��l�

II = G>̂ ���
�� , G>̌ �l�,��l�

II �0� = G>̌ �l�,��l�

�� �0� . �21�

Equation �21� determines the finite-size effect in the inter-
face. Note that once the bulk force constant matrix is known,
identifying atoms in the interface region does not require
additional computation effort

Evaluating the Green’s function in real space between to
atoms �xl+na0 ,zl� and �xl� ,zl�� requires a partial inverse Fou-
rier transform over Eq. �18�

G� ���
I� �xl − xl� + na0;zl,zl�� = �

−kmax

kmax

G> �l,��l�
I� �kx�e−ikx�xl−xl�+na0�dkx

�22�

and

G� ���
II �xl − xl� + na0;zl,zl��

= �
−kmax

kmax

G> �l,��l�
II �kx�e−ikx�xl−xl�+na0�dkx. �23�

The G>̂ term in Eqn. �18� is treated analytically via

�
−	

	 1

�kx�
e−ikxxdkx = − 2 ln�x� .

Therefore

�
−kmax

kmax 1

�kx�
e−ikxxdkx = − 2 ln�x� + 2Ci�kmaxx� . �24�

Note that limx→0−2 ln�x�+2Ci=2�+2 ln�kmax�, where �
�0.577215 is the Euler constant. The partial inverse Fourier

transform for G>̌ terms are evaluated numerically over a dis-
crete kx mesh of size Nkx

G>̌ ���
I� �xl − xl� + na0;zl,zl�� =

1

Nkx

�
kx

G>̌ �l,��l�
I� �kx�e−ikx�xl−xl�+na0�

�25�

and

G>̌ ���
II �xl − xl� + na0;zl,zl�� =

1

Nkx

�
kx

G>̌ �l,��l�
II �kx�e−ikx�xl−xl�+na0�.

�26�

Table I summarizes the method.

IV. APPLICATION: LATTICE GREEN’S FUNCTION FOR

Ti (101̄2) TWIN BOUNDARY

We use the method to compute the ILGF for a Ti lattice

containing �101̄2� twin boundary. The geometry of this
boundary is shown in Fig. 1�c�. The F� �,� and M� �,� matrices
are

TABLE I. Summary of the procedure for ILGF computation. Regions �+, −, and I� are defined in Fig.
1�b�. G� −+�x ;z ,z�� is the elastic Green’s function for a bicrystal computed by Tewary et al. �Ref. 19�. G> ���k��
is the LGF in bulk �=�. Fourier transform prefactors required to maintain the consistency between elastic
bicrystal GF and bulk LGF solutions are also listed.

1. Compute D� ����xl−xl�+na0 ;zl ,zl�� directly. Divide the geometry into −, I ,+ regions.

2. D> �l,��l�
I� �kx�= �

n=−	

	

eikx�xl−xl�+na0�D� ���
I� �xl−xl�+na0 ;zl ,zl��, a0=periodicity in x direction and �= � , I. Eq. �4�

3. G> �l,��l�
−+ �kx�=

b1

2��t�2� �−	
	 G� ���

−+ �x ;zl ,zl��e
ikxxdx, b1= 2�

a0
, b1b2=ABZ. Eq. �7�

4. G> �l,��l�
�� �kx�= 1

b2
�ki�kx�

kf�kx�G> ���
�� �kx ;kz�e−ikz�zl−zl��dkz. Eq. �11�

5. G> �l,��l�
��� �kx�=

G>̂ ���
���

�kx�
+G>̌ �l,��l�

��� �kx�. Eq. �14�

6. D> �l,n�kx�G> n,��l��kx�=�����ll�→G> �l,��l�
I� �kx�=

G>̂ ���
I�

�kx�
+G>̌ �l,��l�

I� �kx�, ��= � , I�. Eqs. �15�–�18�

7. G> �l,��l�
I� �x=xl−xl�+na0 ;zl ,zl��=

G>̂ ���
I�

b1
�−2 ln�x�+2Ci�

b1

2 x��+ 1
Nkx

�
m=1

Nkx
−1

G>̌ �l,��l�
I� �mb1 / Nkx

�e−i
mb1

Nkx

x. Eqs. �24�–�26�
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F� �,� = I, M� � = �2 0 0

1 1 0

1 0 1
�, and M� � = � 2 0 0

1 1 0

− 1 0 1
� .

The twin boundary is defined by t�1=�3a2+c2x̂ and t�2=aŷ,
where a and c are the hcp lattice constants in Ti. Lattice � is
the reflection of � about the twin boundary plane. The

force-constant matrices D� �R� � are computed using LAMMPS
package20 for Ti using the modified embedded atom method
�MEAM� potential with the maximum cut-off distance of
5.5 Å.21 The partial FT in Eq. �4� is done by a uniform
discrete mesh of 40 kx points over �−� /a0 ,� /a0�, where a0
is the periodicity of the geometry in x direction and equal to
�t�1� in this case. The same kx values must be used in �+�, �−�
and �I� regions. Limits of kz in Eq. �11� are then chosen so
that the equivalent of ABZ is covered in both �+� and �−�. The
first three integrals in Eq. �12� are evaluated numerically
over a uniform kz mesh of 160 points at each kx. For
�kx��0.1� /a0, the density of kz mesh is doubled to insure the
convergence around the discontinuity at � point.16,17To de-
termine the convergence with k points, we computed the
Green’s function G� �0;zl ,zl� for a l in �I� and another in �−�
with different k-point meshes. Table II shows that our choice
of k points produces numerical errors of less than 2%.

Figure 2 shows the supercell with bulk �+ /−� and inter-
face �I� divisions and the paths along which LGF is evalu-
ated for testing purposes. Gxx�x−xl� ;zl ,zl�� is plotted along a
vertical and six horizontal paths in the supercell where the
reference atom l� is the first atom �xl�=0� in the horizontal
paths and the atom right below the interface in the vertical

TABLE II. Green’s function G� �0;zl ,zl� with different k-points
meshes for atoms in interface �I� and bulk �−� regions. The Green’s
function is in Å2 /eV. The 40�160 mesh produces numerical errors
of less than 2%.

�kx�kz�

�I� �−�

Gxx Gyy Gzz Gxx Gyy Gzz

20�80 0.1778 0.0880 0.3114 0.1223 0.2993 0.1808

40�160 0.1832 0.0885 0.3106 0.1233 0.3000 0.1794

80�320 0.1852 0.0887 0.3105 0.1232 0.3000 0.1794
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FIG. 2. �Color online� �12̄10� projection of the Ti supercell containing a �101̄2� twin boundary. The supercell is divided into bulk
�+ /−� and interface �I� regions. y axis is pointing into the plane. Variation in the Gxx component of the lattice Green’s function is plotted
along six horizontal and one vertical paths. The reference atom �x� ,z�� is the first atom in horizontal paths and the atom right below the
interface in the vertical path. Bulk behavior along the z=z� paths is recovered away from the interface. The long range behavior of the LGF
matches the EGF along the vertical path while deviating for small z−z�.
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path. Bulk response along zl=zl� paths is gradually recovered
as the paths get farther from the interface and closer to the
�−� region. In addition, it is worth noting that paths 1 and 2
are located in bulk and interface regions, respectively. There-
fore, the LGF is obtained from the bulk lattice Green’s func-
tion along path 1 and from the ILGF method along path 2.
The good agreement between the response of these two paths
verifies the smooth transition between the bulk-interface di-
visions. Gxx�x−x� ;z ,z�� as a function of z is also plotted for
atoms along the vertical line shown on the supercell in
Figure 2. The reference atom is located on the vertical line at
xl�=x� , zl�=z�=−1.413 Å which is right below the inter-
face. The long-range behavior of the ILGF matches the elas-
tic Green’s function �EGF�.

We apply the computed ILGF to simulate the interaction
of a �1̄21̄0� screw dislocation with the Ti �101̄2� twin bound-
ary by flexible boundary conditions1,11 with a Ti MEAM
potential.21 Periodic boundary conditions are applied along
the dislocation line. Flexible boundary conditions relax at-
oms surrounding the dislocation core region with the lattice
Green’s function as if they are embedded in an infinite me-
dium. Conjugate-gradient method relaxes the atoms around
the dislocation core �region 1�. This process generates forces
on atoms of the intermediate region �region 2�. ILGF relaxes
the forces on region 2 and updates the positions of the out-
ermost atoms �region 3�, originally obtained from the elastic
displacement field of the screw dislocation. To verify the
results, we also modeled the same dislocation/interface ge-
ometry with fixed boundary conditions using supercell radii
of 12–50b; b is the magnitude of the Burgers vector equal to
�t�2�. Outer layers of atoms in a region of width 3b are frozen
to elastic displacement field of the screw dislocation and the
inner atoms are relaxed through the conjugate-gradient
method using Ti MEAM. Large supercells are required to
minimize the effect of free surfaces created by the fixed
boundaries.

Figure 3 shows the differential displacement maps22 of the

screw dislocation core structure in the Ti �101̄2� twin bound-
ary obtained by fixed and flexible boundary. Fixed boundary
conditions result in a finite-size effect that is removed with
flexible boundary conditions or with significantly larger cal-
culations. For supercell radii R�17b �R=17b corresponds to
1312 atoms relaxed�, the dislocation center is trapped in the
interface while for R between 18b and 50b—corresponding
to 1474 and 11364 atoms, respectively—the dislocation
center moves out of the interface towards the bottom lattice.
This is possible due to the broken mirror symmetry at the
twin boundary for this MEAM potential. The flexible
boundary conditions supercell has R=12b and 652b
��1�:73, �2�:219, �3�: 360� atoms. The core structure from
flexible boundary conditions is in good agreement with large
fixed boundary conditions results—hence the correct
structure can be obtained using flexible boundary conditions
with significantly less atoms than with fixed boundary
conditions.

V. CONCLUSIONS

Flexible boundary conditions relax the atoms away from
the isolated defect core through the lattice Green’s function
of the perfect lattice before introducing the defect. The case
of defects in interfaces requires the perfect �i.e., without de-
fects� interfacial lattice Green’s function. We developed an
automated computational approach to calculate the lattice
Green’s function of crystals containing planar interfaces for
arbitrary force constants and interface orientations. This
method is more general than the previous Dyson-equation
approaches in the sense that it can consider long-range
atomic interactions and reconstructions near the interface.
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FIG. 3. �Color online� Differential displacement maps of a screw dislocation core in Ti �101̄2� twin boundary computed by fixed and
flexible boundary conditions. Fixed boundary conditions cause a supercell size effect which is evident from different core structures for
radius R smaller or larger than 17b �1312 atoms relaxed�. Flexible boundary conditions give the same core structure as the large fixed
boundary conditions supercell with significantly less atoms required to relax by energy minimization �i.e., 73 atoms in region �1� and 652
atoms total�.
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We computed the ILGF for a Ti �101̄2� twin boundary with a
Ti MEAM potential and studied the screw dislocation/twin
boundary interaction using flexible boundary conditions. Our
results show that the ILGF flexible boundary conditions
method predicts the correct dislocation core structure. More-
over, the energy minimization stage of the flexible boundary
conditions involves significantly less atoms than what is re-
quired by fixed boundary conditions methods. This high-
lights the applicability of flexible boundary conditions meth-
ods to modeling defect/interface interactions by density-
functional theory.
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APPENDIX: EVALUATION OF G>̌ �l,��l�
��� (kx=0)

1. �=��

G>̌ �l,��l�
�� �kx=0� is obtained by taking the limit of Eqs. �12�

and �13� as kx→0

G>̌ �l,��l�
�� �kx = 0� = �

ki�0�

kf�0�

G> ���kzẑ��e−ikz�zl−zl�� − 1�dkz, �A1�

+ �
ki�0�

kf�0�

G> ���kzẑ� −
G>̂ ��

kz
2 fc�kz�dkz, �A2�

+ �
ki�0�

kf�0� G>̂ ��

kz
2 �fc�kz� − 1�dkz, �A3�

+ lim
kx→0

G>̂ ��� arctan�kf�kx�/kx� − arctan�ki�kx�/kx�
kx

−
�

�kx�
� . �A4�

Note that since k� =kzẑ, G>̂ ���k̂� is evaluated along a constant k̂ direction and therefore is a constant. The cut-off function is

fc�kz� = 1 0 � �kz� � 0.5kz
max

12�1 − �kz��2 − 16�1 − �kz��3 0.5kz
max � �kz� � kz

max,
�

where kz
max�Min��ki�0�� ,kf�0�� to insure that fc�kz�=0 at the Brillouin zone boundary. We isolate the kz=0 point by dividing

the integration path in Eqs. �A1�–�A3� into three intervals

�ki�0�,kf�0�� = �ki�0�,− �/2� � �− �/2,�/2� � ��/2,kf�0�� ,

where � is sufficiently small. The first and third intervals do not contain the � point and therefore their corresponding integrals
are evaluated numerically without special treatments. To evaluate the integrals in Eqs. �A1� and �A2� over �−� /2,� /2�, we use
the small kz leading order terms of G> ���k�� �Ref. 16� and the exponential term

�
−�/2

�/2

G> ���kzẑ��e−ikz�zl−zl�� − 1�dkz = �
−�/2

�/2 �G>̂ ���
��

kz
2 +

i

�kz�
G> ���

��,i kz

�kz�
+ G> ���

D �kz���− ikz�zl − zl�� − kz
2
�zl − zl��

2

2
�dkz

= �G> ���
��,i�zl − zl�� − G>̂ ���

��
�zl − zl��

2

2
��

and

�
−�/2

�/2

G> ���kzẑ� −
G>̂ ��

kz
2 fc�kz�dkz = �

−�/2

�/2 �i
G> ���

��,i

kz
+ G> ���

D �kz��dkz = G> ���
D �0�� .
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G>̂ ���
�� /kz

2 and G> ���
D �kz� are the elastic and discontinuity cor-

rections and iG> ���
��,i /kz appears only in the case of a multiatom

basis. G>̂ ���
�� and G> ���

��,i are constants here.16,17 Also note that
fc�kz�=1 over �−� /2,� /2�; hence the integral in Eq. �A3�
equals zero over this interval.

Taking � to be
kf�0�−ki�0�

Ndiv
, where Ndiv is the number of di-

visions in the discrete kz mesh we have

G>̌ �l,��l�
�� �0� =

kf�0� − ki�0�
Ndiv

� �
kz�0

�G> ���
�� �kzẑ�e−ikz�zl−zl�� −

G>̂ ��

kz
2 �

+ G> ���
��,i�zl − zl�� −

G>̂ ���
�� �zl − zl��

2

2
+ G> ���

D �0��
+ G>̂ ���

�� � 1

ki�0�
−

1

kf�0�
� .

The first summation

kf�0� − ki�0�
Ndiv

�
kz�0

�G> ���
�� �kzẑ�e−ikz�zl−zl�� −

G>̂ ��

kz
2 �

=
kf�0� − ki�0�

Ndiv
�

kz�0
�G> ���

�� �kzẑ��e−ikz�zl−zl�� − 1��

+ �G> ���kzẑ� −
G>̂ ��

kz
2 fc�kz�� + G>̂ ��

kz
2 �fc�kz� − 1��

is the numerical integration of all three integrals in Eqs.
�A1�–�A3� over �ki�0� ,−� /2�� �� /2,kf�0��. The last term

G>̂ ���
�� � 1

ki�0� − 1
kf�0� � is the evaluation of Eqn. �A4�.

2. �Å��

G>̌ ���
�� �kx=0� is obtained from the small kx expansion of

Eqn. �9� and removing the kx
−1 term

G>̌ ���
����0� =

�

�t�2�
�2a���

qq� �l,l�
qq�� − b���

qq� �l,l�
qq�� . �A5�
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