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Thermal conductivity of compressed H2O to 22 GPa: A test of the Leibfried-Schlömann equation
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The Leibfried-Schlömann (LS) equation, a commonly assumed model for the pressure dependence of thermal
conductivity �, is tested by measurements on compressed H2O using a combination of the time-domain
thermoreflectance method with the diamond anvil cell technique. The thermal conductivity of ice VII increases
by an order of magnitude between 2 and 22 GPa, reaching � ≈ 25 W m−1 K−1. Over a large compression range
of ≈4%–33%, the LS equation describes the pressure dependence of � of ice VII to better than 20%.
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Thermal conductivity � plays an important role in planetary
evolution. Of particular relevance is the effect of pressure on
� under the conditions of Earth and planetary interiors, where
materials may be compressed by more than 50%. Measuring �

of compressed materials is challenging: typically, the volume
of compressed materials is extremely small in comparison to
what is used in thermal conductivity experiments at ambient
pressure. As a result, measurements of high-pressure � have
been rare for compression exceeding 10%.1,2

H2O, in its diverse forms of vapor, liquid (water), and
solid (ice), is among the most abundant substances in the
solar system. Compressed H2O is prevalent inside icy planets
and moons and governs their evolution and dynamics.3 With
at least 13 polymorphs and the diversity of the hydrogen
bond, the behavior of H2O under pressure is also a subject
of considerable interest in the physics of condensed matter.4,5

Data on the thermal conductivity of compressed H2O are
available to a maximum pressure of only 2.4 GPa.6

For dielectrics such as H2O ices, oxides, and silicates,
thermal conduction is largely controlled by phonon transport.
The Leibfried-Schlömann (LS) formula7,8 is among the most
widely used schemes to describe the pressure dependence of
�. The LS equation is based on a detailed theoretical analysis
of phonon transport8 but it has not been experimentally tested
over a range of pressures sufficient to change the Debye
frequency, density, and elastic constants of a crystal by large
factors. Furthermore, since the LS equation is based on the
assumptions that acoustic phonons are the dominant carriers of
heat and that the dominant scattering mechanism for acoustic
phonons is three-phonon interactions between acoustic modes,
its applicability to crystals with multiple atoms per cell has
been questioned.9,10 Our previous work11 showed that the
pressure dependence of the cross-plane thermal conductivity
of layered muscovite crystal could be adequately described by
the LS equation when we assumed that the effective value of
the Debye frequency varies as the square root of the cross-plane
elastic constant C33. Muscovite is highly anisotropic, however,
and the applicability of the LS equation in this case is not
strictly valid.

This study aims to measure the thermal conductivity of
H2O over a pressure range that was not accessible previously.
The data on ice VII, a cubic crystal with a relatively small
bulk modulus, allow us to test the LS equation over a large

compression ratio. Our method combines the time-domain
thermoreflectance (TDTR) method12 in a diamond anvil cell
(DAC) with density functional theory (DFT) calculations of
the vibrational density of states (DOS). At room temperature,
cubic ice VII (space group Pn3̄m) is stable between 2.1
and ≈60 GPa.13,14 With its extrapolated zero pressure bulk
modulus K0 = 21.1 ± 0.5 GPa and the pressure derivative
K ′

0 = 4.4 ± 0.1,15 ice VII is compressed by more than 30% at
22 GPa.

Symmetric DACs with 600-μm-culet diamonds and steel
gasket were used to compress distilled H2O to 22 GPa. Pressure
was determined from ruby fluorescence.16 An 80-nm-thick
Al film, coated on a 20-μm-thick sheet of muscovite mica
[KAl2(Si3Al)O10(OH)2, grade V-1 from SPI Supplies], was
loaded in the DAC and served as a transducer in the TDTR
measurements. The mica sheet provides a substrate and
thermal insulation for the Al film.

The beam from a mode-locked Ti:sapphire laser was split
into a pump beam and a probe beam, with a time delay between
the two. The pump beam heats the surface of the Al film and the
probe beam monitors the temperature of the Al film through
small changes in the optical reflectivity. The in-phase Vin and
out-of-phase Vout components of the intensity of the reflected
probe beam were measured by a photodiode detector and rf
lock-in amplifier.

To extract information on the thermal conductivity of H2O,
we fitted the measured ratio Vin/Vout as a function of delay
time to a thermal model that considers heat flow into H2O and
the muscovite.17 Representative spectra and fitting are shown
in Fig. 1. The thermal effusivity, i.e., the square root of the
product of � and CP , of H2O, is the only significant unknown
in the thermal model; � of compressed muscovite at room
temperature has been determined in a separate study.11 The CP

of Al and the thermal conductance of the muscovite/aluminum
and H2O/aluminum interfaces were estimated following Hsieh
et al.11 The CP of liquid H2O at high pressures is based on
published data.18 CP of ice VII is determined from our ab intio
calculations of the lattice dynamics of ice VIII and that of ice
VI is calculated according to the thermodynamic relationship
discussed by Tchijov.18

The heat capacity per unit area of the Al film is an important
parameter in the thermal model. We calculate the changes
in the thickness of the Al film with pressure by assuming
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FIG. 1. (Color online) Time-domain thermoreflectance data (blue
symbols) and the fitted curves (red lines) for H2O at 300 K.

that the Al film adheres well to the mica substrate and that
the Al film deforms plastically to accommodate differences
in lateral compression of the Al film and the mica substrate.
Under these assumptions, the thickness of the Al film decreases
by 3.1% at 5 GPa, 5.5% at 10 GPa, and 7.5% at 20 GPa.
(In our previous work,11 we made the mistake of neglecting
this change of Al film thickness with pressure, resulting in
a thermal conductivity of mica that is ≈23% too high at the
highest pressure used in the experiment, 23.5 GPa. This error
is comparable to the experimental uncertainties and does not
change the conclusions of Ref. 11. We used the corrected �

of muscovite in our analysis of the data for ice VII (Table I)).
To analyze the TDTR data, we need to know CP , the heat

capacity per unit volume of ice VII for constant pressure, as
a function of pressure. In our computational work, we use
ice VIII as a surrogate for ice VII because proton-ordered
ice VIII requires much less computational time to analyze
than proton-disordered ice VII and, as we argue below, we
do not expect that disorder in the proton arrangements will
produce a significant change in the heat capacity. Our approach
is to (i) calculate the phonon DOS of ice VIII at 0 K;
(ii) evaluate the constant volume heat capacity CV at 300 K
using Bose-Einstein statistics; and (iii) determine CP by
calculating a correction to CV using the thermodynamic
relationship between CP and CV and experimental values for
the thermal expansion coefficient and bulk modulus from Fei
et al.21

Calculations of the vibrational density of states of ice VIII
are performed with VASP,22,23 a plane-wave density functional
theory code. The Perdew-Wang 1991 (PW91) generalized-
gradient approximation (GGA) for the exchange-correlation
potential24 with the projector-augmented wave potentials25 for
oxygen and hydrogen provide an accurate prediction of the ice
VIII structure. The electronic wave functions are expanded up
to a plane-wave cutoff of 800 eV, with an 18×18×18 k-point
mesh in the Brillouin zone and 0.1 eV Fermi-Dirac smearing
of electronic occupancy. The forces on all ions are relaxed to

5 meV/Å, and the cell vectors relaxed to stresses that deviate
by less than 2 MPa from the applied pressure; this determines
the zero-temperature volume of ice VIII at 0, 10, and 20 GPa
without accounting for zero-point motion. To compute the
vibrational spectra, a direct-force method is used with a
2×2×2 unit cell consisting of 32 oxygen and 64 hydrogen
ions. The resulting forces produced by displacements of +0.01
and −0.01 Å in the x, y, and z directions approximate the
harmonic response of ions; due to translational and rotational
symmetry, only one oxygen and hydrogen atom is displaced in
the unit cell. The extracted force constants are used to compute
the phonon spectra on a 32×32×32 k-point mesh in the
Brillouin zone to determine the phonon DOS, and compute the
vibrational contribution to the constant-volume heat capacity
at 300 K.

Our calculated vibrational DOS spectra of ice VIII at 0, 10,
and 20 GPa and 0 K agree well with experimental data26 and
previous calculations at 0 GPa.27 Moreover, both experiments
and theory suggest only a minor difference in vibrational
density of states between ice VII and VIII.26,27 Vibrational
excitation of the proton sublattice contributes 30% of CV at
0 GPa and 24% at 20 GPa. The effects of the random proton
arrangements in ice VII would therefore have to be large to
produce a significantly different CV for ice VII.

We apply Bose-Einstein statistics to the phonon DOS of
ice VIII at 0, 10, and 20 GPa and find CV ≈ 3.04 J cm−3 K−1

at T = 300 K independent of pressure. The correction to the
pressure from atomic vibrations at 300 K is 2.1 GPa, also
independent of pressure. The nearly constant value of CV

(J cm−3 K−1) is a coincidence that results from the opposing

TABLE I. The thermal conductivity (W m−1 K−1) and heat
capacity (J cm−3 K−1) of H2O and muscovite at 300 K up to
22 GPa.

P
H2O Muscovited

Phasea (GPa) �b CP
c � CP

W 0.1 (.1) 0.54 (.07) 4.11 0.49 2.31
W 0.5 (.1) 0.70 (.05) 4.39 0.47 2.32
W 0.8 (.1) 0.84 (.02) 4.57 0.48 2.32
VI 1.8 (.1) 1.8 (.2) 2.89 0.59 2.34
VII 2.5 (.1) 3.8 (.4) 3.05 0.71 2.35
VII 6.6 (.1) 5.7 (.6) 3.05 1.46 2.43
VII 10.5 (.2) 8.7 (1.0) 3.05 1.79 2.50
VII 14.6 (.1) 12.1 (1.4) 3.04 2.45 2.56
VII 18.3 (.3) 17.8 (1.8) 3.04 3.55 2.62
VII 22.0 (.4) 24.8 (3.0) 3.04 4.65 2.68

a“W”: liquid water; “VI”: ice VI; “VII”: ice VII.
bThe numbers in parentheses are the uncertainties estimated from
multiple measurements.
cCP of liquid water is estimated from its density (Ref. 19) and by
assuming CP in J g−1 K−1 is constant and ≈3.979 (J g−1 K−1), which
is the CP at 0.1 GPa and 300 K (Ref. 20); CP of ice VII is derived
from the DFT calculations of ice VIII and thermal expansivity of ice
VII (Ref. 21); CP of ice VI is estimated from the thermodynamics
relations in Tchijov (Ref. 18).
dThe thermal conductivity and heat capacity of muscovite are from
Hsieh et al. (Ref. 11), used as input parameters to the thermal model.
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effects of the decrease in the number of thermally excited
vibrational modes and the increase in the atomic density with
increasing pressure.

To evaluate CP , we use the thermodynamic relationship
CP − CV = T α2KT ,28 where T is the temperature, α is
the bulk thermal expansion coefficient, and KT is the bulk
modulus. The correction to CV is extremely small: 0.7% at
2.1 GPa, 0.4% at 10 GPa, and 0.2% at 20 GPa. Our calculated
values for CP of ice VII (Table I) from 2.1 to 4.0 GPa are
≈24% smaller than the values from a thermodynamic analysis
of the ice VII to water phase transition that were derived by
extrapolating the equation of state of water and fitting the
melting curve of ice VII in the pressure range P < 5 GPa.18,21

Our results (Fig. 2) show that � of liquid H2O increases
from 0.60 W m−1 K−1 at 1 bar to 0.83 (±0.06) W m−1 K−1

at 1.3 GPa; and � of ice VI is 1.8–1.9 W m−1 K−1 between
1.8 and 2.0 GPa. Water persisted beyond 1.05 GPa in our
experiments due to steady-state heating �T of the sample by
the average power of the pump and probe beam; for water, we
estimate �T = 50 K. The steady-state heating decreases to
�T = 30 K for ice VI and �T < 20 K for ice VII. Within
the uncertainty of the measurements (±10%), the thermal
conductivity of water and ice VI agree with the standard
reference values of liquid water at 300 K,29,30 and with the
previously published values for ice VI at 300 K in Ross
et al.1 The agreement confirms the validity of the method,
which opens up the capability to study thermal physics under
extreme conditions. Upon transformation to cubic ice VII, �

almost doubles, consistent with theoretical understanding of
the effects of the change in density and structure at this phase
transition.31 Our results for ice VII are ≈28% higher than a
single reported value of 2.7–2.9 W m−1 K−1 between 2.0 and
2.4 GPa (Fig. 2 and Table I).1 The � of ice VII increases
with pressure by about (13 ± 2)% per GPa in the low-pressure
regime, comparable to the rate of ≈20% per GPa reported by
the previous study covering a limited pressure range of 2.0 to
2.4 GPa.1

The Leibfried-Schlömann equation is often used to model
the pressure dependence of �,

� = f
V 1/3ω3

D

γ 2T
, (1)

where V is the volume, ωD is the Debye frequency, γ is
the Grüneisen parameter, T is the temperature, and f is
a parameter independent of pressure.8 We use our data for
the thermal conductivity of ice VII to test the accuracy of
the LS equation for describing the pressure dependence of
� over a much wide range of � than has been previously
possible. To begin, we ignore the weak pressure dependence
of V 1/3 and γ and consider only the pressure dependence of
the Debye frequency. If we assume that the Poisson ratio and
elastic anisotropy parameter are approximately independent of
pressure, then ωD ∝ V 1/6

√
KT ,32 where KT is the isothermal

bulk modulus at pressure P . At constant T , the LS equation
is then simply � = AK

3/2
T . The isothermal bulk modulus

is defined as KT = −dP/d ln V . We extract KT from the
third-order Birch-Murnaghan equation of state (EOS) with
three free parameters at P = 0, V0 = 12.4 ± 0.1 cm3 mole−1,
K0 = 21.1 ± 1.3 GPa, and K ′

0 = 4.4 ± 0.1.15 The best fit
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FIG. 2. (Color online) Thermal conductivity of H2O up to 22
GPa at 300 K (open symbols). The � of ice VII can be fitted
approximately by considering only the change in bulk modulus (red
dotted curve), where A equals to 0.020 (±0.001), or more accurately
by also considering the pressure dependence of the unit cell volume
V and the Grüneisen parameter γ (red dashed curve), where B equals
0.008 (±0.001) with 95% confidence level. The uncertainties in �

are estimated from multiple measurements at the same pressure. The
V/V0 of ice VII was based on Frank et al. (Ref. 15).

of to the thermal conductivity data gives A = 0.020 ±
0.001 Wm−1 K−1 GPa−1.5, Fig. 2.

The quality of agreement between theory and experiment
does not change if we also consider the pressure dependence
of V and γ in Eq. (1). Assuming that the Poisson ratio and
elastic anisotropy are independent of pressure, the Grüneisen
parameter γ , also known as the “Slater γ ,”33 can be derived
from the pressure derivative of the bulk modulus γ = 1

2
dK
dP

−
1
6 . Taking the pressure derivative of KT of ice VII in the Birch-
Murnaghan EOS,15, the calculated γ decreases with P from
γ = 1.82 at 2.1 GPa to γ = 1.47 at 25 GPa. The � of ice
VII is well fitted by � = BV 5/6K

3/2
T /γ 2, where B = 0.008

(±0.001) × 105 W mole5/6 m−3.5 K−1 GPa−1.5 (see Fig. 2). It
should be noted that γ was derived from the second derivative
of volume with regard to pressure and thus requires accurate
measurements of the EOS.

We conclude that the LS equation describes the pressure
dependence of � of ice VII over a large compression range
(�V/V0) ≈4%–33% to better than 20%. When compressed
from 2.5 to 22 GPa, � of ice VII increases by nearly one order
of magnitude, from 3.8 to 25 W m−1 K−1 (Fig. 2), reaching
a value that is comparable to the ambient pressure thermal
conductivity of sapphire (Al2O3).34

The Leibfried-Schlömann equation is tested over a wide
range of Debye frequencies, density, and elastic constants
of a cubic crystal, ice VII. The pressure dependence of �

can be adequately described by the LS equation of ice VII
up to 22 GPa, confirming its usefulness as a model for the
pressure dependence of � for dielectric crystalline materials.
The theoretical predication is of important significance for

132301-3



BRIEF REPORTS PHYSICAL REVIEW B 83, 132301 (2011)

solid-state physics and geophysics. For instance, most of the
planetary interiors are under extremely high pressure, where
experimental measurements of � of its constitutive materials
are generally not available. This relationship, if proved valid
for most dielectric materials, could be adapted to predict the
� at extreme conditions based on the thermal conductivity
at ambient conditions and the equation of state. We point
out, however, that the LS equation is formulated for pure
crystals and may need to be modified to account for the effects
of disorder in mixed crystals such as olivine (Mg,Fe)2SiO4

in the Earth’s upper mantle, and perovskite and postper-
ovskite (Mg,Fe)SiO3 and ferropericlase (Mg,Fe)O in the lower
mantle.
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