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We propose an efficient, accurate method to integrate the basins of attraction of a smooth func-
tion defined on a general discrete grid and apply it to the Bader charge partitioning for the electron
charge density. Starting with the evolution of trajectories in space following the gradient of charge
density, we derive an expression for the fraction of space neighboring each grid point that flows
to its neighbors. This serves as the basis to compute the fraction of each grid volume that belongs
to a basin (Bader volume) and as a weight for the discrete integration of functions over the Bader
volume. Compared with other grid-based algorithms, our approach is robust, more computationally
efficient with linear computational effort, accurate, and has quadratic convergence. Moreover, it is
straightforward to extend to nonuniform grids, such as from a mesh-refinement approach, and can
be used to both identify basins of attraction of fixed points and integrate functions over the basins.
© 2011 American Institute of Physics. [doi:10.1063/1.3553716]

I. INTRODUCTION

Based on density functional theory (DFT) (Ref. 1)
calculations, decomposing the charge or the energy of a
material into contributions from individual atoms can provide
new information for material properties. Bader’s “atoms in
molecules” theory provides an example of a partitioning
based on the charge density, and following the gradient at a
particular point in space to the location of a charge density
maximum centered at an atom—defining basins of attraction
of fixed points of the charge density. Bader defines the atomic
charges and well-defined kinetic energies as integrals over
these Bader volumes,2 �ρ . Each Bader volume contains a
single electron density maximum and is separated from other
volumes by a zero flux surface of the gradients of the electron
density, ∇ρ(�r ) · n̂ = 0. Here, ρ(�r ) is the electron density, and
n̂ is the unit vector perpendicular to the dividing surface at
any surface point �r ∈ ∂�ρ . Each volume �ρ is defined by a
set of points where following a trajectory of maximizing ρ

reaches the same unique maximum (fixed point). In practical
numerical calculations, where the charge density is defined
on a discrete grid of points in real space, it is very challenging
to have an accurate determination of the zero flux surface.

Different approaches for condensed, periodic systems
have relied on analytic expressions of the density3, 4 or dis-
cretizing the charge density trajectories.5–10 Early algorithms
were based on the electron density calculated from analyti-
cal wavefunctions of small molecules and integration along
the gradient paths. Most current developments are based on
a grid of electron density, which is important for DFT cal-
culation and also applicable to analytical density function of
small molecules. One octal tree algorithm5 uses a recursive
cube subdivision to find the atomic basins robustly, but prac-
tically is not applicable to complicated topologies due to huge
computational cost. The “elastic sheet” method6 defines a se-
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ries of fictitious particles, which give a discrete representa-
tion of zero flux surface. Particles are relaxed according to
the gradients of electron density and interparticle forces. This
method will not work for complex surfaces with sharp cusps
or points. Recently, Henkelman et al. developed an on-grid
method7 to divide an electron density grid into Bader vol-
umes. This method can be applied to the DFT calculations
of large molecules or materials. They discretize the trajectory
to lie on the grid, ending at the local maximal point of the
electron density. The points along each trajectory are assigned
to the atom closest to the end point. Although this method is
robust, and scales linearly with the grid size, it introduces a
lattice bias caused by the fact that ascent trajectories are con-
strained to the grid points. The near-grid method8 improves
this by accumulating a correction vector—the difference be-
tween the discretized trajectory and the true trajectory—at
each step. When the correction vector is sufficiently large, the
discrete trajectory is corrected to a neighboring grid point.
This method corrects the lattice bias and also scales linearly
with respect to the size of grids. However, both grid trajec-
tory methods require iteration to self-consistency in volume
assignments. Also, the integration error scales linearly with
the grid spacing, so very fine grids are required in numerical
calculations to provide the correct Bader volume, reducing
its applicability for accurate calculations in a large system.
Lastly, a new algorithm uses a “divide and conquer” adap-
tive approach with tetrahedra; tetrahedra are continuously di-
vided at the boundaries of Bader volumes, with the “weight”
of each tetrahedron given by the number of vertices that be-
long to each volume.9 Such an approach retains linear scal-
ing with the grid spacing, but requires mesh refinement near
boundaries to deal with the linear convergence of the error
with the grid spacing. Other mesh-refinement schemes have
proven very useful in the treatment of small molecules,10 but
it is less clear the applicability to condensed systems as con-
sidered here.
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FIG. 1. A schematic illustration of the zero flux surface, the near-grid al-
gorithm, and weighted integration. The zero flux dividing surface separates
volumes A and B, where arrows denote charge density gradients (a). The nor-
mal component is zero for any point on the surface ∇ρ · n̂ = 0. The near-grid
method8 gives grid-based partition (b); however, energy density integration
based on this grid-based partition would cause integration error due to finite
grid sizes. A weight function, (c) representing volume fractions of the cell of
each grid point, is introduced to reduce the error due to a finite grid.

Figure 1 illustrates the partition of real space into two
Bader volumes A and B by a zero flux dividing surface. The
component of ∇ρ along the surface normal n̂ is zero for any
point on the surface ∂ A or ∂ B. A grid-based partition algo-
rithm, such as the near-grid method, divides space into vol-
ume surrounding around each grid point and assigns each
grid volume to a particular Bader volume. Even though grid
points may be assigned to Bader volumes correctly, the den-
sity integration based on the grid-based partition would bring
in numerical integration error that scales linearly with the grid
spacing. Introducing a weight integrand representing the frac-
tion of grid volume that belongs to a particular Bader volume
smooths out the grid-based partition and improves the integra-
tion accuracy, and scales quadratically with the grid spacing.
The atomic contribution is neither 1 nor 0 at the dividing sur-
faces, but fractional. In Fig. 1, red represents a weight of 1
to atom A for grid points closer to atom A, and transitions to
white for a weight of 0 for grid points away from atom A.

The grid-based weight representing volume fractions of
each grid volume assigned to different atoms and gives a
more accurate integrand for the integration of either charge
density or of kinetic energy density over the Bader volumes.
The weight is computed from the total integrated flux of tra-
jectories in a grid volume to neighboring grid volumes. The
algorithm is robust, efficient with linear computing time in
the number of grid points, and more accurate than the near-
grid algorithm. Surprisingly, it combines both better error
scaling—quadratic in the grid spacing—and improved com-
putational efficiency. We have implemented and tested the
algorithm for regular real-space grids, as result from plane-
wave DFT calculations. However, it is straightforward to ap-
ply to nonuniform grids, such as would result from an adap-
tive mesh-refinement approach. In Sec. II, we derive the
algorithm to construct a grid-based weight to perform numer-
ical integrals over Bader volumes. Section III presents exam-
ples including three-dimensional charge density from three
Gaussian functions in an FCC cell, TiO2 bulk, NaCl crys-
tal, and for a Si self-interstitial. Finally, we show the im-
proved computational efficiency in Sec. IV. The end result
is a simple, extendable, computationally efficient algorithm
with quadratic integration error.

II. THE WEIGHT METHOD

The Bader partitioning of space defines volumes by the
endpoint of a trajectory following the gradient flow of the

A

B

FIG. 2. Schematic illustration of the weight method. The volume of the cell
of a grid point flows to its neighbors with larger charge density magnitude.
Flowing flux is shown as directional map, either flowing from X to X ′ as red
arrows or flowing from X ′ to X as blue arrows.

charge density, ∇ρ. We assume that ρ has continuous first
and second derivatives throughout all space of interest, and
has a set of discrete local maxima (fixed points) �x1, �x2, etc.,
where ∇ρ = 0 and the matrix ∇∇ρ is negative-definite. The
basin of attraction An , of a fixed point �xn , is the set of points
which flow to the fixed point �xn along the charge density gra-
dient. That is, for any point �r , we can integrate the trajectory
given by �̇x(t) = ∇ρ(�x), with the initial condition �x(0) = �r , to
find limt→∞ �x(t). Each trajectory will end at a fixed point �xn ,
and except for a set of points with zero volume in space, the
extremum is a local maximum; the basin of attraction An are
all points �r whose trajectory limt→∞ �x(t) ends at �xn . Note also
that if point �r0 ∈ A, and the trajectory starting from �r1 reaches
�r0 in a finite time t , then �r1 ∈ A. This set defines a partitioning
of space, where An ∩ Am = ∅ when n 
= m and ∪n An = �.
Finally, each basin An is such that wherever the normal n̂ to
the bounding surface ∂ An is well-defined, n̂ · ∇ρ = 0. If ρ is
the charge density, then An are the Bader volumes; but this
definition is applicable to any sufficiently smooth function
with a discrete set of local maxima. As the definition of the
basins An derives from trajectories, it is not possible in gen-
eral to determine if two neighboring points �r and �r ′ belong to
the same or different basins based only on local information.

Figure 2 shows the reformulation for an approximate
fractional partitioning of a real-valued function evaluated at a
set of discrete points, X . The grid points X partition space into
Voronoi polyhedra11 VX covering each grid point X , where a
point in space �r belongs to the volume VX if X is the closest
point in Cartesian space to �r . Each polyhedra is defined by
the nearest neighboring points X ′ that are a distance �X→X ′

away; the Voronoi polyhedron at X has facets ∂VX→X ′ with
normal n̂X→X ′ pointing from X to X ′ and area aX→X ′ . More-
over, the facet is at the midpoint between X and X ′. Our goal
is to define for each grid point X , a weight w A(X ) between
0 and 1 such that

∑
A w A(X ) = 1 for all X , and the discrete

approximation to the integral over the basin A∫
A

d3r f (�r) ≈
∑

X

VX w A(X ) f (X ) (1)

converges quadratically in the grid spacing for smooth func-
tions f (�r ). The weight, in this case, is the fraction of points
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in VX whose trajectory ends in the basin A. Note that if the
points X form a regular periodic grid, the Voronoi volumes,
facet areas, and neighbor distances need only be computed for
the Wigner–Seitz cell around a single grid point.

To transition from the continuum definition of spatial
partitioning to our Voronoi partitioned definition, we intro-
duce the continuum probability density for our trajectories,
P(�r , t). From the trajectory equation, the probability flux at
any point and time is �j(�r , t) = P(�r , t)∇ρ(�r ). Then, the prob-
ability distribution evolves in time according to a continuity
equation

∂ P(�r , t)

∂t
+ ∇ · (P(�r , t)∇ρ(�r )) = 0. (2)

This equation represents the combined evolution of a distribu-
tion of points in space; we use it to determine how the points
in VX distribute to neighboring volumes VX ′ . Define the vol-
ume probability

PX (t) =
∫

VX

d3r P(�r , t), (3)

then the evolution from the initial condition

P(�r , 0) =
{

V −1
X : �r ∈ VX

0 : �r /∈ VX
(4)

is given by

d PX (t)

dt
= −

∫
VX

d3r∇ · (P(�r , t)∇ρ(�r ))

= −
∑

X ′

∫
∂VX→X ′

P(�r , t)∇ρ · n̂X→X ′d2r

≈ −PX (t)V −1
X

∑
X ′

∫
∂VX→X ′

∇ρ · n̂X→X ′d2r

≈ −PX (t)
∑

X ′

aX→X ′

VX
· R(ρX ′ − ρX )

�X→X ′

≡ −PX (t)
∑

X ′
τX→X ′ , (5)

where R(u) = uθ (u) is the ramp function, so that τX→X ′ ≥ 0
and is zero when ρX ′ < ρX ; this is a consequence of our initial
conditions where P(r, 0) is only nonzero in the interior of VX .
The first approximation ignores spatial variation of P(r, t)
through the volume VX (an error linear in the grid spacing),
and the second approximation ignores spatial variation of ∇ρ

along a facet ∂VX→X ′ , and approximates the gradient at the
midpoint between X and X ′ with the finite difference value
(also with an error that is linear in the grid spacing). The so-
lution to Eq. (5) is PX (t) = exp(−t

∑
X ′ τX→X ′). For that so-

lution, the time-integrated flux of probability from VX to VX ′

through the facet ∂VX→X ′ is

JX→X ′ =
∫ ∞

0
dt

∫
∂VX→X ′

P(�r , t)∇ρ · n̂X→X ′d2r

≈
∫ ∞

0
dt PX (t)V −1

X

∫
∂VX→X ′

∇ρ · n̂X→X ′d2r

≈
∫ ∞

0
dt PX (t)τX→X ′

= aX→X ′�−1
X→X ′ R(ρX ′ − ρX )∑

X ′ aX→X ′�−1
X→X ′ R(ρX ′ − ρX ),

(6)

where we have used the same approximations as above. This
flux defines the total fraction of points inside VX that tran-
sition to volume VX ′ through ∂VX→X ′ . Note that

∑
X ′ JX→X ′

= 1, unless X is a local (discrete) maxima, where ρX > ρX ′

for all neighbors X ′. Finally, as the weight w A(X ) represents
the volume fraction of points in volume VX whose trajectory
ends inside basin A, then

w A(X ) =
∑

X ′
JX→X ′w A(X ′). (7)

Note that if for all X ′ where ρ(X ′) > ρ(X ),
∑

A w A(X ′)
= 1, then as

∑
X ′ JX→X ′ = 1, Eq. (7) guarantees that∑

A w A(X ) = 1. Appendix A shows that the error in the
weight of linear order in the grid spacing produces a quadratic
order error in the integration.

Forward substitution solves Eq. (7) after the grid points
are sorted from highest to lowest density ρ(X ). Sequentially,
each point X is either

(1) A local maxima: ρ(X ) > ρ(X ′) for all neighbors X ′.
This grid point corresponds to a new basin A, and we
assign w A(X ) = 1.

(2) An interior point: for all X ′ where ρ(X ′) > ρ(X ), the
weights have been assigned and w A(X ′) = 1 for the
same basin A. Then Eq. (7) assigns X to basin A as well:
w A(X ) = 1.

(3) A boundary point, with weights between 0 and 1 for
multiple basins assigned by Eq. (7).

Then w A(X ) is known from w A(X ′) where ρ(X ′) > ρ(X ) for
each basin A (as JX→X ′ 
= 0 only if ρ(X ′) > ρ(X )). Note also
that the weight for a particular basin An is assigned with-
out reference to any other basin Am ; once the set of time-
integrated fluxes JX→X ′ are known and the densities sorted in
descending order, the solution for each basin is straightfor-
ward, and Eq. (7) is only needed on the boundary points.

This algorithm solves several issues with the near-grid
method. It requires no self-consistency, which improves the
computational scaling. Moreover, the introduction of smooth
functions that define the volume fraction of points in each
basin produces less error and faster convergence with addi-
tional grid points. The algorithm is also readily applicable to
nonuniform grids, such as an adaptive meshing scheme—it
only requires computation of the Voronoi volumes and facets
for the grid points. In one dimension, Eq. (1) has quadratic
convergence in the grid spacing (cf. Appendix A); we now
demonstrate the quadratic convergence and improved integra-
tion accuracy for three-dimensional problems.

III. EVALUATION OF NUMERICAL CONVERGENCE

One determination of the accuracy of Bader volume in-
tegration is the vanishing of the volume integration of the
Laplacian of charge density ∇2ρ(r). The nonzero value of
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the Laplacian of charge density integration within each Bader
volume is our atomic integration error and can be used as an
estimate of the error of the integration of the kinetic energy
density. We construct the zero flux surface of the gradients
of charge density and evaluate the integration error with both
the weight- and near-grid methods for several cases. First, we
consider an analytic charge density with known boundaries in
an orthogonal and a nonorthogonal cell. Next, we calculate
real systems: an ionic compound and a semiconductor. We
also evaluate the Bader charge of Na atom in a NaCl crystal by
integrating the charge density within Bader volume and com-
pare the convergence with the near-grid method. Finally, we
demonstrate the improved error and computational efficiency
on a large calculation: a Si self-interstitial, with a 217-atom
supercell and ∼107 grid points.

A. Gaussian densities

Figure 3 shows an example of misassignment of the
grid points to basins from the near-grid method. Misassign-
ment occurs for the grid points close to the dividing sur-
faces with the gradients of charge density almost parallel
to the surfaces. In this example, a three-dimensional model
charge density is constructed from three Gaussian func-
tions in simple cubic unit cell, ρ(�r ) = ∑

i=1,3 e(−�r−�ri )2/W 2
.

The �ri are (0.25N , 0.25N , 0.4N ), (0.5N , 0.5N , 0.5N ), and
(0.75N , 0.75N , 0.4N ), with width W = N/10. Figure 3
shows the charge density distribution on (11̄0) plane. Due to
the symmetry of charge density distribution, the true dividing
surfaces along charge density saddle points are known analyt-
ically and shown as two black lines on (11̄0) plane. The grid
points marked by orange circles are assigned to the wrong
basins by the near-grid method, different from the partition
of spatial points by true dividing surfaces. The gradients of
charge density shown in arrows for these misassigned surface
points have small normal components, and we believe this is
the cause of the misassignment.

To test integration accuracy beyond simple cubic
lattices, we map this model charge density onto an
FCC unit cell shown in Fig. 4. The three-dimensional
model charge density is constructed from three Gaus-
sian functions, ρ(r) = ∑

i=1,3 e(−r−ri )2/W 2
. The ri are

located at (0.25N , 0.25N , 0.4N ); (0.5N , 0.5N , 0.5N );
(0.75N , 0.75N , 0.4N ) where N 3 is the number of grid points
in the FCC unit cell and W = N/10. We vary N from 20 to
100. The Voronoi cell of the FCC lattice has 12 neighbors,
where all facets have the same area. The atomic weights on
every grid represent the fraction of Voronoi volume of that
grid point flowing to specific atom through its neighbors. By
calculating on a set of grid sizes, one obtains the maximal
atomic integration errors from the near-grid method and the
weight method.

Figure 4 shows a reduction in error of 3 orders of mag-
nitude from the near-grid method. Fitting data to a nonlin-
ear function y = a N−r gives a convergence rate of 0.71 for
the weight method, and 0.45 for the near-grid method. The
exponent of 0.71 is close to the 2/3 expected for quadratic
convergence, and 0.45 is close to the 1/3 expected for linear
convergence. The weight method has both better absolute

(a)

(b)

(c)

FIG. 3. Charge density distribution constructed from three Gaussian func-
tions, and basin identification with the near-grid method and the weight
method. The grid size is N = 60, and the charge density is shown on (11̄0)
plane; this is coplanar with the centers of the three Gaussian functions. The
true dividing surfaces (known by symmetry) are indicated by two black lines.
The basin assignment of grid points is given: red dots for ion I, green dots
for ion II, and blue dots for ion III; for the weight method, a single color
is assigned to the maximum weight at each point. Basin assignment from the
near-grid method is given in the middle panel; basins with maximal weight on
every grid points from the weight method are indicated in the bottom panel.
Orange circles in the middle panel indicate the grid points misassigned by the
near-grid method and corrected by the weight method. Arrows in the bottom
panel denote the directions of the gradients of charge density, which can be
used to verify the correctness of basin assignment.

FIG. 4. Comparison of the near-grid method and the weight method on
atomic integration errors in an FCC cell. The maximal atomic volume in-
tegrations of the Laplacian of charge density within Bader volumes using
the near-grid method and the weight method are denoted by squares and cir-
cles, respectively. We calculate charge density grids ranging from 203 points
to 1003. Our algorithm gives atomic integration errors 3 orders of magni-
tude lower than the near-grid method and converges faster than the near-grid
method.
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error and converges faster than the near-grid method; in ad-
dition, there is no crossover point at large grid spacing where
near-grid has smaller errors. The several orders of magnitude
improvement in integration error is, in part, a consequence of
the very smooth Gaussian functions. For the following cases
of charge densities computed from Kohn–Sham orbitals, we
will continue to see the same scaling of error with grid den-
sity, and a reduction of 1 to 2 order of magnitude in integration
error. However, the difference in error reduction for charge
densities computed from Kohn-Sham orbitals is less than for a
smooth model system because of the larger magnitude higher-
order spatial derivatives (cf. Appendix A).

B. TiO2 bulk

For a real charge density, we perform density-functional
theory (DFT) calculations on TiO2 bulk with the projector
augmented wave (PAW) (Ref. 12) method and with the gener-
alized gradient approximation (GGA) of Perdew, Burke, and
Ernzerhof (PBE)13 for the exchange-correlation energy. DFT
calculations are performed with the Vienna ab initio simula-
tion package (VASP) (Refs. 14 and 15) using a plane-wave
basis with the PAW method, with potentials generated by
Kresse and Joubert.16 Atomic configurations for Ti and O are
[Ne]3s23p64s23d2 with cutoff radius 1.22 Å, and [He]2s22p4

with cutoff radius 0.58 Å, respectively. We use a plane-wave
basis set with cutoff energy of 900 eV. The tetragonal unit
cell of rutile TiO2 (see Fig. 5) contains two Ti atoms and four
O atoms. Monkhorst–Pack k-point method with 4 × 4 × 6
k-points for six-atom cell is used for Brillouin-zone inte-
gration with a Gaussian smearing of 0.1 eV for electronic
occupancies. Theoretically optimized lattice constant are
a = 4.649 Å, c = 2.970 Å, u = 0.305 agreeing with ex-
perimental lattice constants of a = 4.584 Å, c = 2.953 Å,
u = 0.305.17 A set of charge density grids ranging from 45
× 45 × 30, 60 × 60 × 40, 75 × 75 × 50, 90 × 90 × 60,
120 × 120 × 80 to 150 × 150 × 100 points are calculated.
For the energy cutoff of 900 eV, a grid of 45 × 45 × 30 is
required to eliminate wrap-around errors and is the minimum
size used by an accurate VASP calculation.

Figure 5 shows maximal atomic integration errors as a
function of grid sizes. The weight method gives maximal

FIG. 5. Maximal atomic integration error on rutile TiO2 with respect to the
charge density grids. A set of charge density grids ranging from 45 × 45 × 30
points to 150 × 150 × 100 points are calculated. The weight method reports
maximal atomic integration error at least 1 order of magnitude smaller than
the near-grid method. The weight method is practically useful for calculations
with a small grid size.

FIG. 6. Comparison of the near-grid method and the weight method for max-
imal atomic integration error of NaCl crystal. A set of charge density grids
ranging from 603 points to 1803 points are calculated. Comparing to the near-
grid method, the weight method reduces the integration error remarkably.

atomic integration error 1 order of magnitude lower than the
near-grid method systematically. The atomic integration error
larger than 1.0 eV on the minimal grid size 45 × 45 × 30
from the near-grid method is unacceptably large. Again, the
convergence rate of the error goes as ∼ 2/3 for the weight
method—corresponding to quadratic convergence—and
∼1/3 for the near-grid method—corresponding to linear
convergence. Both the improved error and faster convergence
allows for more accurate density integration with fewer grid
points than near grid.

C. NaCl crystal

In this example, we evaluate the Bader charge (va-
lence electron density integration within Bader volume) of
Na atom in a NaCl crystal by integrating the charge den-
sity within Bader volume and compare the value with the
near-grid method. We perform DFT calculations by use of
the PAW method, the GGA of Perdew–Wang (PW91)18 for
the exchange-correlation energy. Atomic configurations for
Na and Cl are [He]2s22p63s1 with cutoff radius 0.77 Å, and
[Ne]3s23p5 with cutoff radius 1.00 Å, respectively. A plane-
wave basis set with cutoff energy of 500 eV is applied. The
NaCl unit cell contains four Na atoms and four Cl atoms.
Monkhorst–Pack k-point method with 3 × 3 × 3 k-points for
eight-atom cell is used for Brillouin-zone integration with a
Gaussian smearing of 0.2 eV for electronic occupancies. The
optimized lattice constant of 5.67 Å agrees with the experi-
mental lattice constant of 5.64 Å. A set of charge density grids
of 603, 803, 1003, 1203, to 1803 points are calculated.

Figure 6 shows the maximal atomic integration error as
a function of various grid sizes. The weight method again
shows maximal atomic integration error at least 1 order of
magnitude lower than the near-grid method systematically.
The scaling of the error goes as the ∼2/3 power for the weight
method, showing continued quadratic convergence, while the
near-grid method error scales as the ∼1/3 power, which is
linear convergence.

Figure 7 shows that Bader charge of Na atom evalu-
ated on various charge grids. The weight method computes
a Bader charge of Na atom slightly larger than the near-
grid method. Fitting the data to ρ = ρ0 + (C/Nα

grid), we find
converged Bader charge values of 0.878, 0.881 e, for the
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FIG. 7. Comparison of the near-grid method and the weight method on con-
vergence of Bader charges of Na in a NaCl crystal. The Bader charge of Na
is calculated for a set of density grids ranging from 603 points to 1803 points.
Both methods give monotonic and smooth convergence.

near-grid method and the weight method, respectively. We be-
lieve this is due to a systematic misassignment for the near-
grid method, as shown for the Gaussian charge density case.
This suggests that the misassignment may not be improved by
increasing the density of grid points in the near-grid method.
This suggests that the divide and conquer approach using con-
tinually refined grids can face potential difficulty. For 603

grid points, the near-grid method underestimates the Bader
charge by 0.01 e, while the weight method underestimates it
by 0.005 e, again showing faster convergence.

D. Si self-interstitial

For a real charge density of a large-scale (>100) atom
calculation, we study a Si tetrahedral self-interstitial with
the PAW12 method, the GGA of PW91 (Ref. 18) for the
exchange-correlation energy. Atomic configurations for Si is
[Ne]3s23p2 with cutoff radius 1.01 Å. We use a plane-wave
basis set with cutoff energy of 417 eV, giving a lattice con-
stant of 5.4674 Å. For our 3 × 3 × 3 simple cubic supercell
of 216+1 atoms, we use a Monkhorst–Pack k-point method
with 4 × 4 × 4 with a Gaussian smearing of 0.15 eV for elec-
tronic occupancies. A set of charge density grids ranging from
1283, 1503, 1803, to 2103 points are calculated. This gives an
interstitial formation energy of 4.02 eV.

Figure 8 shows maximal atomic integration errors as a
function of grid sizes. The weight method gives maximal

FIG. 8. Maximal atomic integration error on a 216+1 atom supercell calcu-
lation of a Si self-interstitial with respect to the charge density grids. A set of
charge density grids ranging from 1283 points to 2103 points are calculated.
The weight method reports maximal atomic integration error at least 1 order
of magnitude smaller than the near-grid method.

atomic integration error 1 order of magnitude lower than the
near-grid method systematically and shows the same scaling
of error with number of grid points corresponding to quadratic
convergence. The near-grid method has more than 1 order of
magnitude larger error, but also shows unusual nonmonotonic
behavior of the error for the same charge density. Such be-
havior cannot be due to normal integration error, but must be
coming from misassignment of grid points to the wrong basin.
Both the improved error, faster convergence allows for more
accurate density integration with far fewer grid points than
near grid.

IV. COMPUTATIONAL EFFORT

The weight method is computationally efficient, requir-
ing overall effort that scales linearly with the number of grid
points. The total computer time is comprised of two primary
tasks: the sorting of charge density costs O(N log N ) with N
grid points and the atomic weight evaluation on the sorted
grid points beginning from grid point with maximum den-
sity requires at most N × Natom computer time. The computa-
tional effort is smaller than that, as only the surface grid points
which have fractional atomic weights require Natom calcula-
tions, while each interior grid point requires only one calcu-
lation. Generally, the number of surface grid points is a small
fraction of the number of total grid points and scales as N 2/3.
For example, the ratio of the number of surface grid points to
the number of total grid points is 14% in NaCl with total grid
sizes 603.

In a calculation with charge density grid sizes approach-
ing ∼107 grid points and hundreds of atoms in large super-
cells, we find our algorithm is not only more accurate, but
more efficient than the near-grid method. Both methods scale
linearly with the number of grid points. Figure 9 shows the
linear scaling of computer time required to analyze the charge
density grid for an eight-atom NaCl and a 216+1 atom Si
supercell with the number of grid points. The improved effi-
ciency of our algorithm appears to originate from the lack of
a self-consistent refinement of basin assignment. Comparing
to the near-grid method, which needs refinement of assign-
ments, our weight method has small prefactor, although both
are linearly scaled. The primary computational effort in both
cases is the computation of weights at each grid point; hence,
if only a few specific basins are needed, the computational
effort can be further reduced. It is also worth noting that the
algorithm is quite simple compared with trajectory following
algorithms.10

V. CONCLUSIONS

We develop a weight method to integrate functions de-
fined on a discrete grid over basins of attraction (such as Bader
volumes) in an efficient and accurate manner. The weight
method works with the density on a discrete grid and assigns
volume fractions of the Voronoi cell of each grid point to sur-
rounding basins. Starting from the local density maxima, all
the grid points are sorted in density descending order. Grid
points can then be fractionally weighted from the weights of
its neighbors with larger density. This method depends upon
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FIG. 9. Computer time required to analyze the charge density grid for an
eight-atom NaCl cell (top) and a 216+1 atom Si supercell with the self-
interstitial (bottom). The calculations were performed using an Intel(R)-
Xeon(R) L5320, with a clockspeed of 1.86 GHz. The computer time scales
linearly with respect to the number of charge density grid sizes with the
weight method, as with the near-grid method. The weight method has a
smaller prefactor than the near-grid method.

the formulation of flow across that dividing surfaces between
the cells of two neighboring grid points and can be applied to
uniform or nonuniform grids.

We perform tests on model three-dimensional charge
density constructed from Gaussian functions in an FCC cell.
The weight method shows that the atomic integration error is
inversely proportional to the 2/3 power of grid points, while
the integration error is inversely proportional to the 1/3 power
of grid points using the near-grid method. We also perform
tests on more realistic systems, such as TiO2 bulk, NaCl crys-
tal, and a Si self-interstitial. In both cases, the weight method
reports maximal atomic integration error at least 1 order of
magnitude smaller than the near-grid method systematically.
Furthermore, we calculate the Bader charge of NaCl crystal
using these two methods, both give monotonic and smooth
convergence with respect to the increasing grid sizes, while
they converge to slight different values, by 0.003 e. The
weight method is more accurate than the near-grid method
that requires very fine grids.
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APPENDIX: QUADRATIC ERROR IN ONE DIMENSION

The weight method for integration of the Bader charge
volume has error that is quadratic in the grid spacing in one
dimension. Consider the charge density ρ(x) evaluated on a
regular grid with spacing h. In Eq. (1), there are only two
grid points where w A(X ) is not exactly 0 or 1; these are the
boundary points, and each is adjacent to a local minimum. In
one dimension, the contributions to Eq. (1) that could produce
errors linear in h only come from those points; the integra-
tion of the interior produces a total error that is quadratic in h.
Hence, without loss of generality, we consider a single bound-
ary point and show that its contribution to Eq. (1) produces an
error that is of the order h2, rather than h.

Let X be an boundary point, where the basin A lies to
its left. This requires that ρ(X − h) > ρ(X ), and ρ(X + 2h)
> ρ(X + h). Finally, in order for w A(X ) to not be identically
1, ρ(X ) < ρ(X + h). This means that there is a point X + δ

for δ ∈ [0, h], such that ρ ′(X + δ) = 0. Then, the flux from
Eq. (6) is

JX→X−h = ρ(X − h) − ρ(X )

ρ(X − h) + ρ(X + h) − 2ρ(X )
(A1)

and JX→X+h = 1 − JX→X−h ; finally, as ρ(X ) < ρ(X + h),
JX+h→X = 0. Then, w A(X − h) = 1, w A(X + h) = 0, and so
w A(X ) = JX→X−h . Finally, the contribution to Eq. (1) from X
is ∫ X+δ

X−h/2
f (x)dx ≈ h JX→X−h f (X ) (A2)

To evaluate the integration error, we use a Taylor ex-
pansion for ρ and f around the grid point X . We write ρ(n)

= dnρ/dxn(X ) and f (n) = dn f/dxn(X ). Note that ρ(1) has to
scale as h in order for the dividing point X + δ to lie between
X and X + h. The Taylor expansion of w A(X ) = JX→X−h

from Eq. (A1) to linear order in h is

w A(X ) ≈
[

1

2
− ρ(1)h−1

ρ(2)

]
− h

ρ(3)

6ρ(2)
+ O(h2), (A3)

so our integration contribution is

h

[
1

2
− ρ(1)h−1

ρ(2)

]
f (X ) − h2 ρ(3)

6ρ(2)
f (X ) + O(h3). (A4)

To find the true value of the expression, we need to determine
δ to at least quadratic order in h; write δ = δ(1)h + δ(2)h2, and
we have

ρ ′(X + δ) = ρ(1) + δ · ρ(2) + 1

2
δ2 · ρ(3) + O(h3)

0 = h(ρ(1)h−1) + hδ(1)ρ(2)

+h2δ(2)ρ(2) + 1

2
h2(δ(1))2ρ(3) + O(h3), (A5)

which is solved by

δ(1) = −ρ(1)h−1

ρ(2)

δ(2) = − (ρ(1)h−1)2ρ(3)

2(ρ(2))3
. (A6)
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With our quadratic approximation for δ, we can integrate
f (x) as∫ X+δ

X−h/2
f (x)dx = (x − X ) f (X ) + 1

2
(x − X )2 f (1)

+O((x − X )3)

∣∣∣∣
X+δ

X−h/2

= h

[
1

2
− ρ(1)h−1

ρ(2)

]
f (X ) + h2

2

(
ρ(1)h−1

ρ(2)

)2

×
[

f (1) − f (X )
ρ(3)

ρ(2)

]
+ O(h3), (A7)

which agrees with the contribution from our weight integra-
tion in Eq. (A4) up to an error of order h2. As a special case,
consider f (x) = 1/h; then the integral

1

h

∫ X+δ

X−h/2
dx = w A(X ) + O(h) (A8)

which shows that the weight is the volume fraction of the
Voronoi volume belonging to basin A to first order in h.
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